药代动力学的预测建模:从硅内模拟到个性化医疗。

Ajita Paliwal, Smita Jain, Sachin Kumar, Pranay Wal, Madhusmruti Khandai, Prasanna Shama Khandige, Vandana Sadananda, Md Khalid Anwer, Monica Gulati, Tapan Behl, Shriyansh Srivastava
{"title":"药代动力学的预测建模:从硅内模拟到个性化医疗。","authors":"Ajita Paliwal, Smita Jain, Sachin Kumar, Pranay Wal, Madhusmruti Khandai, Prasanna Shama Khandige, Vandana Sadananda, Md Khalid Anwer, Monica Gulati, Tapan Behl, Shriyansh Srivastava","doi":"10.1080/17425255.2024.2330666","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties.</p><p><strong>Areas covered: </strong>The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged.</p><p><strong>Expert opinion: </strong>AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.</p>","PeriodicalId":94005,"journal":{"name":"Expert opinion on drug metabolism & toxicology","volume":" ","pages":"181-195"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Modelling in pharmacokinetics: from in-silico simulations to personalized medicine.\",\"authors\":\"Ajita Paliwal, Smita Jain, Sachin Kumar, Pranay Wal, Madhusmruti Khandai, Prasanna Shama Khandige, Vandana Sadananda, Md Khalid Anwer, Monica Gulati, Tapan Behl, Shriyansh Srivastava\",\"doi\":\"10.1080/17425255.2024.2330666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties.</p><p><strong>Areas covered: </strong>The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged.</p><p><strong>Expert opinion: </strong>AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.</p>\",\"PeriodicalId\":94005,\"journal\":{\"name\":\"Expert opinion on drug metabolism & toxicology\",\"volume\":\" \",\"pages\":\"181-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug metabolism & toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425255.2024.2330666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug metabolism & toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425255.2024.2330666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:药代动力学参数评估是药物发现和开发的一个重要方面,但由于训练数据有限,挑战依然存在。尽管在机器学习和体内预测方面取得了进步,但数据的匮乏阻碍了候选药物药代动力学特性的准确预测:研究重点介绍了人体药代动力学预测的最新进展,谈到了应用合成方法进行分子设计的尝试,并检索了多个数据库,包括 Scopus、PubMed、Web of Science 和 Google Scholar。文章强调了严格分析机器学习模型性能对评估研究进展的重要性,并探讨了分子建模(MM)技术、描述符和数学方法。在谈到临床药物开发时,文章重点介绍了基于人工智能(AI)的计算机模型,这些模型可优化试验设计、患者选择、剂量策略和生物标记物鉴定。包括分子相互作用组和虚拟患者在内的室内模型可以预测药物在不同情况下的表现,这强调了将模型结果与临床研究相结合以确保可靠性的必要性。对人类专家进行导航预测模型的专门培训被认为至关重要。药物基因组学是个性化医疗不可或缺的一部分,它利用预测模型来预测病人的反应,从而提高医疗保健系统的效率。专家认为,实现预测模型潜力的挑战包括伦理考虑和数据隐私问题:人工智能模型在药物开发、优化试验、患者选择、剂量和生物标记物鉴定方面至关重要,有望简化临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Modelling in pharmacokinetics: from in-silico simulations to personalized medicine.

Introduction: Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties.

Areas covered: The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged.

Expert opinion: AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信