用于制造长而灵活的微流体管道的 3d 微打印同轴喷嘴。

Olivia M Young, Bailey M Felix, Mark D Fuge, Axel Krieger, Ryan D Sochol
{"title":"用于制造长而灵活的微流体管道的 3d 微打印同轴喷嘴。","authors":"Olivia M Young, Bailey M Felix, Mark D Fuge, Axel Krieger, Ryan D Sochol","doi":"10.1109/mems58180.2024.10439296","DOIUrl":null,"url":null,"abstract":"<p><p>A variety of emerging applications, particularly those in medical and soft robotics fields, are predicated on the ability to fabricate long, flexible meso/microfluidic tubing with high customization. To address this need, here we present a hybrid additive manufacturing (or \"three-dimensional (3D) printing\") strategy that involves three key steps: (<i>i</i>) using the \"Vat Photopolymerization (VPP) technique, \"Liquid-Crystal Display (LCD)\" 3D printing to print a bulk microfluidic device with three inlets and three concentric outlets; (<i>ii</i>) using \"Two-Photon Direct Laser Writing (DLW)\" to 3D microprint a coaxial nozzle directly atop the concentric outlets of the bulk microdevice, and then (<i>iii</i>) extruding paraffin oil and a liquid-phase photocurable resin through the coaxial nozzle and into a polydimethylsiloxane (PDMS) channel for UV exposure, ultimately producing the desired tubing. In addition to fabricating the resulting tubing-composed of polymerized photomaterial-at arbitrary lengths (<i>e.g</i>., > 10 cm), the distinct input pressures can be adjusted to tune the inner diameter (ID) and outer diameter (OD) of the fabricated tubing. For example, experimental results revealed that increasing the driving pressure of the liquid-phase photomaterial from 50 kPa to 100 kPa led to fluidic tubing with IDs and ODs of 291±99 <i>μ</i>m and 546±76 <i>μ</i>m up to 741±31 <i>μ</i>m and 888±39 <i>μ</i>m, respectively. Furthermore, preliminary results for DLW-printing a microfluidic \"M\" structure directly atop the tubing suggest that the tubing could be used for \"<i>ex situ</i> DLW (<i>es</i>DLW)\" fabrication, which would further enhance the utility of the tubing.</p>","PeriodicalId":91953,"journal":{"name":"Proceedings. IEEE International Conference on Micro Electro Mechanical Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936740/pdf/","citationCount":"0","resultStr":"{\"title\":\"A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING.\",\"authors\":\"Olivia M Young, Bailey M Felix, Mark D Fuge, Axel Krieger, Ryan D Sochol\",\"doi\":\"10.1109/mems58180.2024.10439296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A variety of emerging applications, particularly those in medical and soft robotics fields, are predicated on the ability to fabricate long, flexible meso/microfluidic tubing with high customization. To address this need, here we present a hybrid additive manufacturing (or \\\"three-dimensional (3D) printing\\\") strategy that involves three key steps: (<i>i</i>) using the \\\"Vat Photopolymerization (VPP) technique, \\\"Liquid-Crystal Display (LCD)\\\" 3D printing to print a bulk microfluidic device with three inlets and three concentric outlets; (<i>ii</i>) using \\\"Two-Photon Direct Laser Writing (DLW)\\\" to 3D microprint a coaxial nozzle directly atop the concentric outlets of the bulk microdevice, and then (<i>iii</i>) extruding paraffin oil and a liquid-phase photocurable resin through the coaxial nozzle and into a polydimethylsiloxane (PDMS) channel for UV exposure, ultimately producing the desired tubing. In addition to fabricating the resulting tubing-composed of polymerized photomaterial-at arbitrary lengths (<i>e.g</i>., > 10 cm), the distinct input pressures can be adjusted to tune the inner diameter (ID) and outer diameter (OD) of the fabricated tubing. For example, experimental results revealed that increasing the driving pressure of the liquid-phase photomaterial from 50 kPa to 100 kPa led to fluidic tubing with IDs and ODs of 291±99 <i>μ</i>m and 546±76 <i>μ</i>m up to 741±31 <i>μ</i>m and 888±39 <i>μ</i>m, respectively. Furthermore, preliminary results for DLW-printing a microfluidic \\\"M\\\" structure directly atop the tubing suggest that the tubing could be used for \\\"<i>ex situ</i> DLW (<i>es</i>DLW)\\\" fabrication, which would further enhance the utility of the tubing.</p>\",\"PeriodicalId\":91953,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Micro Electro Mechanical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936740/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mems58180.2024.10439296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mems58180.2024.10439296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各种新兴应用,尤其是医疗和软机器人领域的应用,都需要能够制造出高度定制化的柔性介/微流体长管。为了满足这一需求,我们在此提出了一种混合增材制造(或 "三维(3D)打印")策略,包括三个关键步骤:(i) 使用 "大桶光聚合(VPP)技术"、"液晶显示器(LCD)"三维打印技术来打印具有三个入口和三个同心出口的散装微流体装置;(ii) 使用 "双光子直接激光写入(DLW)"三维微打印技术,在大块微器件的同心出口上直接打印一个同轴喷嘴,然后 (iii) 通过同轴喷嘴挤出石蜡油和液相光固化树脂,并将其挤入聚二甲基硅氧烷(PDMS)通道中进行紫外线照射,最终制成所需的管道。除了以任意长度(例如大于 10 厘米)制造由聚合光材料构成的管材外,还可以调节不同的输入压力,以调整制造管材的内径(ID)和外径(OD)。例如,实验结果表明,将液相光材料的驱动压力从 50 kPa 增加到 100 kPa,可使流体管的内径和外径分别从 291±99 μm 和 546±76 μm 增加到 741±31 μm 和 888±39 μm。此外,直接在管材上用 DLW 印刷微流体 "M "结构的初步结果表明,管材可用于 "原位 DLW(esDLW)"制造,这将进一步提高管材的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING.

A variety of emerging applications, particularly those in medical and soft robotics fields, are predicated on the ability to fabricate long, flexible meso/microfluidic tubing with high customization. To address this need, here we present a hybrid additive manufacturing (or "three-dimensional (3D) printing") strategy that involves three key steps: (i) using the "Vat Photopolymerization (VPP) technique, "Liquid-Crystal Display (LCD)" 3D printing to print a bulk microfluidic device with three inlets and three concentric outlets; (ii) using "Two-Photon Direct Laser Writing (DLW)" to 3D microprint a coaxial nozzle directly atop the concentric outlets of the bulk microdevice, and then (iii) extruding paraffin oil and a liquid-phase photocurable resin through the coaxial nozzle and into a polydimethylsiloxane (PDMS) channel for UV exposure, ultimately producing the desired tubing. In addition to fabricating the resulting tubing-composed of polymerized photomaterial-at arbitrary lengths (e.g., > 10 cm), the distinct input pressures can be adjusted to tune the inner diameter (ID) and outer diameter (OD) of the fabricated tubing. For example, experimental results revealed that increasing the driving pressure of the liquid-phase photomaterial from 50 kPa to 100 kPa led to fluidic tubing with IDs and ODs of 291±99 μm and 546±76 μm up to 741±31 μm and 888±39 μm, respectively. Furthermore, preliminary results for DLW-printing a microfluidic "M" structure directly atop the tubing suggest that the tubing could be used for "ex situ DLW (esDLW)" fabrication, which would further enhance the utility of the tubing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信