模拟环境变化对演化种群的影响

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
John A. Bullinaria
{"title":"模拟环境变化对演化种群的影响","authors":"John A. Bullinaria","doi":"10.1162/artl_a_00429","DOIUrl":null,"url":null,"abstract":"This study uses evolutionary simulations to explore the strategies that emerge to enable populations to cope with random environmental changes in situations where lifetime learning approaches are not available to accommodate them. In particular, it investigates how the average magnitude of change per unit time and the persistence of the changes (and hence the resulting autocorrelation of the environmental time series) affect the change tolerances, population diversities, and extinction timescales that emerge. Although it is the change persistence (often discussed in terms of environmental noise color) that has received most attention in the recent literature, other factors, particularly the average change magnitude, interact with this and can be more important drivers of the adaptive strategies that emerge. Moreover, when running simulations, the choice of change representation and normalization can also affect the outcomes. Detailed simulations are presented that are designed to explore all these issues. They also reveal significant dependences on the associated mutation rates and the extent to which they can evolve, and they clarify how evolution often leads populations into strategies with higher risks of extinction. Overall, this study shows how modeling the effect of environmental change requires more care than may have previously been realized.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 2","pages":"147-170"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating the Effect of Environmental Change on Evolving Populations\",\"authors\":\"John A. Bullinaria\",\"doi\":\"10.1162/artl_a_00429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses evolutionary simulations to explore the strategies that emerge to enable populations to cope with random environmental changes in situations where lifetime learning approaches are not available to accommodate them. In particular, it investigates how the average magnitude of change per unit time and the persistence of the changes (and hence the resulting autocorrelation of the environmental time series) affect the change tolerances, population diversities, and extinction timescales that emerge. Although it is the change persistence (often discussed in terms of environmental noise color) that has received most attention in the recent literature, other factors, particularly the average change magnitude, interact with this and can be more important drivers of the adaptive strategies that emerge. Moreover, when running simulations, the choice of change representation and normalization can also affect the outcomes. Detailed simulations are presented that are designed to explore all these issues. They also reveal significant dependences on the associated mutation rates and the extent to which they can evolve, and they clarify how evolution often leads populations into strategies with higher risks of extinction. Overall, this study shows how modeling the effect of environmental change requires more care than may have previously been realized.\",\"PeriodicalId\":55574,\"journal\":{\"name\":\"Artificial Life\",\"volume\":\"30 2\",\"pages\":\"147-170\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10541911/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10541911/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用进化模拟来探讨在没有终生学习方法来适应随机环境变化的情况下,使种群能够应对这些变化的策略。特别是,它研究了单位时间内变化的平均幅度和变化的持续性(以及由此产生的环境时间序列的自相关性)如何影响变化耐受性、种群多样性和灭绝时间尺度。虽然变化的持续性(通常用环境噪声颜色来讨论)在最近的文献中最受关注,但其他因素,尤其是平均变化幅度,也会与之相互作用,并可能成为产生适应性策略的更重要的驱动因素。此外,在进行模拟时,对变化表示和归一化的选择也会影响结果。本文介绍了旨在探讨所有这些问题的详细模拟。这些模拟还揭示了相关突变率及其进化程度的重要依赖性,并阐明了进化如何经常导致种群采取灭绝风险更高的策略。总之,这项研究表明,对环境变化的影响进行建模需要比以往认识到的更加谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating the Effect of Environmental Change on Evolving Populations
This study uses evolutionary simulations to explore the strategies that emerge to enable populations to cope with random environmental changes in situations where lifetime learning approaches are not available to accommodate them. In particular, it investigates how the average magnitude of change per unit time and the persistence of the changes (and hence the resulting autocorrelation of the environmental time series) affect the change tolerances, population diversities, and extinction timescales that emerge. Although it is the change persistence (often discussed in terms of environmental noise color) that has received most attention in the recent literature, other factors, particularly the average change magnitude, interact with this and can be more important drivers of the adaptive strategies that emerge. Moreover, when running simulations, the choice of change representation and normalization can also affect the outcomes. Detailed simulations are presented that are designed to explore all these issues. They also reveal significant dependences on the associated mutation rates and the extent to which they can evolve, and they clarify how evolution often leads populations into strategies with higher risks of extinction. Overall, this study shows how modeling the effect of environmental change requires more care than may have previously been realized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信