采用熊嗅觉搜索算法优化的深度克罗内克神经网络的自适应激活函数,用于防范城域网网络安全攻击。

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
E V R M Kalaimani Shanmugham, Saravanan Dhatchnamurthy, Prabbu Sankar Pakkiri, Neha Garg
{"title":"采用熊嗅觉搜索算法优化的深度克罗内克神经网络的自适应激活函数,用于防范城域网网络安全攻击。","authors":"E V R M Kalaimani Shanmugham, Saravanan Dhatchnamurthy, Prabbu Sankar Pakkiri, Neha Garg","doi":"10.1080/0954898X.2024.2321391","DOIUrl":null,"url":null,"abstract":"<p><p>An Adaptive activation Functions with Deep Kronecker Neural Network optimized with Bear Smell Search Algorithm (BSSA) (ADKNN-BSSA-CSMANET) is proposed for preventing MANET Cyber security attacks. The mobile users are enrolled with Trusted Authority Using a Crypto Hash Signature (SHA-256). Every mobile user uploads their finger vein biometric, user ID, latitude and longitude for confirmation. The packet analyser checks if any attack patterns are identified. It is implemented using adaptive density-based spatial clustering (ADSC) that deems information from packet header. Geodesic filtering (GF) is used as a pre-processing method for eradicating the unsolicited content and filtering pertinent data. Group Teaching Algorithm (GTA)-based feature selection is utilized for ideal collection of features and Adaptive Activation Functions along Deep Kronecker Neural Network (ADKNN) is used to categorizing normal and attack packets (DoS, Probe, U2R, and R2L). Then BSSA is utilized for optimizing the weight parameters of ADKNN classifier for optimal classification. The proposed technique is executed in python and its efficiency is evaluated by several performances metrics, such as Accuracy, Attack Detection Rate, Detection Delay, Packet Delivery Ratio, Throughput, and Energy Consumption. The proposed technique provides 36.64%, 33.06%, and 33.98% lower Detection Delay on NSL-KDD dataset compared with the existing methods.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive activation Functions with Deep Kronecker Neural Network optimized with Bear Smell Search Algorithm for preventing MANET Cyber security attacks.\",\"authors\":\"E V R M Kalaimani Shanmugham, Saravanan Dhatchnamurthy, Prabbu Sankar Pakkiri, Neha Garg\",\"doi\":\"10.1080/0954898X.2024.2321391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An Adaptive activation Functions with Deep Kronecker Neural Network optimized with Bear Smell Search Algorithm (BSSA) (ADKNN-BSSA-CSMANET) is proposed for preventing MANET Cyber security attacks. The mobile users are enrolled with Trusted Authority Using a Crypto Hash Signature (SHA-256). Every mobile user uploads their finger vein biometric, user ID, latitude and longitude for confirmation. The packet analyser checks if any attack patterns are identified. It is implemented using adaptive density-based spatial clustering (ADSC) that deems information from packet header. Geodesic filtering (GF) is used as a pre-processing method for eradicating the unsolicited content and filtering pertinent data. Group Teaching Algorithm (GTA)-based feature selection is utilized for ideal collection of features and Adaptive Activation Functions along Deep Kronecker Neural Network (ADKNN) is used to categorizing normal and attack packets (DoS, Probe, U2R, and R2L). Then BSSA is utilized for optimizing the weight parameters of ADKNN classifier for optimal classification. The proposed technique is executed in python and its efficiency is evaluated by several performances metrics, such as Accuracy, Attack Detection Rate, Detection Delay, Packet Delivery Ratio, Throughput, and Energy Consumption. The proposed technique provides 36.64%, 33.06%, and 33.98% lower Detection Delay on NSL-KDD dataset compared with the existing methods.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2321391\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2321391","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为防止城域网网络安全攻击,提出了一种采用熊嗅觉搜索算法(BSSA)优化的深度克罗内克神经网络自适应激活函数(ADKNN-BSSA-CSMANET)。移动用户使用加密哈希签名(SHA-256)在可信机构注册。每个移动用户上传其手指静脉生物特征、用户 ID、经纬度进行确认。数据包分析器检查是否识别出任何攻击模式。它采用基于密度的自适应空间聚类(ADSC)技术,从数据包标题中提取信息。大地过滤(GF)被用作一种预处理方法,用于消除未经请求的内容和过滤相关数据。基于群组教学算法(GTA)的特征选择用于理想的特征收集,自适应激活函数和深度克罗内克神经网络(ADKNN)用于对正常数据包和攻击数据包(DoS、Probe、U2R 和 R2L)进行分类。然后,利用 BSSA 优化 ADKNN 分类器的权重参数,以获得最佳分类效果。所提出的技术在 python 中执行,并通过多项性能指标评估其效率,如准确率、攻击检测率、检测延迟、数据包交付率、吞吐量和能耗。在 NSL-KDD 数据集上,与现有方法相比,拟议技术的检测延迟分别降低了 36.64%、33.06% 和 33.98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive activation Functions with Deep Kronecker Neural Network optimized with Bear Smell Search Algorithm for preventing MANET Cyber security attacks.

An Adaptive activation Functions with Deep Kronecker Neural Network optimized with Bear Smell Search Algorithm (BSSA) (ADKNN-BSSA-CSMANET) is proposed for preventing MANET Cyber security attacks. The mobile users are enrolled with Trusted Authority Using a Crypto Hash Signature (SHA-256). Every mobile user uploads their finger vein biometric, user ID, latitude and longitude for confirmation. The packet analyser checks if any attack patterns are identified. It is implemented using adaptive density-based spatial clustering (ADSC) that deems information from packet header. Geodesic filtering (GF) is used as a pre-processing method for eradicating the unsolicited content and filtering pertinent data. Group Teaching Algorithm (GTA)-based feature selection is utilized for ideal collection of features and Adaptive Activation Functions along Deep Kronecker Neural Network (ADKNN) is used to categorizing normal and attack packets (DoS, Probe, U2R, and R2L). Then BSSA is utilized for optimizing the weight parameters of ADKNN classifier for optimal classification. The proposed technique is executed in python and its efficiency is evaluated by several performances metrics, such as Accuracy, Attack Detection Rate, Detection Delay, Packet Delivery Ratio, Throughput, and Energy Consumption. The proposed technique provides 36.64%, 33.06%, and 33.98% lower Detection Delay on NSL-KDD dataset compared with the existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信