将生物活性草药化合物与生物材料相结合,用于再生医学。

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Guoying Zhou, Ruojiao Xu, Thomas Groth, Yanying Wang, Xingyu Yuan, Hua Ye, Xiaobing Dou
{"title":"将生物活性草药化合物与生物材料相结合,用于再生医学。","authors":"Guoying Zhou, Ruojiao Xu, Thomas Groth, Yanying Wang, Xingyu Yuan, Hua Ye, Xiaobing Dou","doi":"10.1089/ten.TEB.2024.0002","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine.\",\"authors\":\"Guoying Zhou, Ruojiao Xu, Thomas Groth, Yanying Wang, Xingyu Yuan, Hua Ye, Xiaobing Dou\",\"doi\":\"10.1089/ten.TEB.2024.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEB.2024.0002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2024.0002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

再生医学旨在通过细胞疗法、基因疗法和组织工程以及生物活性分子的辅助应用,恢复患病或受损组织和器官的功能。传统的生物活性分子(如生长因子和细胞因子)在调节细胞和组织行为方面显示出巨大潜力,但存在来源有限、成本高、半衰期短和副作用大等缺点。近年来,从天然植物/草本植物中提取的草本化合物越来越受到关注。这不仅是因为草药化合物容易获得、价格低廉、大多安全可靠,还因为它们具有抗炎、抗菌、抗氧化、促血管生成行为和促进干细胞分化能力等卓越功效。这些作用在组织再生过程中也发挥着重要作用。此外,草药化合物的分子能与支架形成物理或化学键,这有助于提高支架的机械强度和稳定性。因此,在生物材料中加入草药化合物作为生物活性分子是未来再生医学应用的一个很有前景的方向。本文概述了生物活性草药化合物与不同生物材料支架在再生医学应用中的结合使用。我们首先介绍了不同草药生物活性成分的分类、结构和特性,然后全面考察了利用生物活性草药化合物设计皮肤、软骨、骨、神经和心脏组织修复/再生支架的情况。最后,我们强调了中草药支架在未来临床转化发展中面临的挑战和前景。总之,我们相信生物活性草药化合物与生物材料的结合将是下一代再生医学的一个前景广阔的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine.

Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信