Michael S. Haney, Róbert Pálovics, Christy Nicole Munson, Chris Long, Patrik K. Johansson, Oscar Yip, Wentao Dong, Eshaan Rawat, Elizabeth West, Johannes C. M. Schlachetzki, Andy Tsai, Ian Hunter Guldner, Bhawika S. Lamichhane, Amanda Smith, Nicholas Schaum, Kruti Calcuttawala, Andrew Shin, Yung-Hua Wang, Chengzhong Wang, Nicole Koutsodendris, Geidy E. Serrano, Thomas G. Beach, Eric M. Reiman, Christopher K. Glass, Monther Abu-Remaileh, Annika Enejder, Yadong Huang, Tony Wyss-Coray
{"title":"APOE4/4 与阿尔茨海默病小胶质细胞中的损伤性脂滴有关。","authors":"Michael S. Haney, Róbert Pálovics, Christy Nicole Munson, Chris Long, Patrik K. Johansson, Oscar Yip, Wentao Dong, Eshaan Rawat, Elizabeth West, Johannes C. M. Schlachetzki, Andy Tsai, Ian Hunter Guldner, Bhawika S. Lamichhane, Amanda Smith, Nicholas Schaum, Kruti Calcuttawala, Andrew Shin, Yung-Hua Wang, Chengzhong Wang, Nicole Koutsodendris, Geidy E. Serrano, Thomas G. Beach, Eric M. Reiman, Christopher K. Glass, Monther Abu-Remaileh, Annika Enejder, Yadong Huang, Tony Wyss-Coray","doi":"10.1038/s41586-024-07185-7","DOIUrl":null,"url":null,"abstract":"Several genetic risk factors for Alzheimer’s disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer’s disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer’s disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer’s disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Aβ induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer’s disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer’s disease. A microglial state, featuring lipid droplets and secretion of neurotoxic factors, is shown to be most prominent in people with Alzheimer’s disease who have the APOE4 genotype.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"628 8006","pages":"154-161"},"PeriodicalIF":50.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-07185-7.pdf","citationCount":"0","resultStr":"{\"title\":\"APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia\",\"authors\":\"Michael S. Haney, Róbert Pálovics, Christy Nicole Munson, Chris Long, Patrik K. Johansson, Oscar Yip, Wentao Dong, Eshaan Rawat, Elizabeth West, Johannes C. M. Schlachetzki, Andy Tsai, Ian Hunter Guldner, Bhawika S. Lamichhane, Amanda Smith, Nicholas Schaum, Kruti Calcuttawala, Andrew Shin, Yung-Hua Wang, Chengzhong Wang, Nicole Koutsodendris, Geidy E. Serrano, Thomas G. Beach, Eric M. Reiman, Christopher K. Glass, Monther Abu-Remaileh, Annika Enejder, Yadong Huang, Tony Wyss-Coray\",\"doi\":\"10.1038/s41586-024-07185-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several genetic risk factors for Alzheimer’s disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer’s disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer’s disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer’s disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Aβ induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer’s disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer’s disease. A microglial state, featuring lipid droplets and secretion of neurotoxic factors, is shown to be most prominent in people with Alzheimer’s disease who have the APOE4 genotype.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"628 8006\",\"pages\":\"154-161\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41586-024-07185-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-024-07185-7\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07185-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia
Several genetic risk factors for Alzheimer’s disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer’s disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer’s disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer’s disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Aβ induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer’s disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer’s disease. A microglial state, featuring lipid droplets and secretion of neurotoxic factors, is shown to be most prominent in people with Alzheimer’s disease who have the APOE4 genotype.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.