透视:基于核磁共振的代谢组学数据的使用和再利用:哪些有效,哪些仍具挑战性。

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Goncalo Jorge Gouveia, Thomas Head, Leo L Cheng, Chaevien S Clendinen, John R Cort, Xiuxia Du, Arthur S Edison, Candace C Fleischer, Jeffrey Hoch, Nathaniel Mercaldo, Wimal Pathmasiri, Daniel Raftery, Tracey B Schock, Lloyd W Sumner, Panteleimon G Takis, Valérie Copié, Hamid R Eghbalnia, Robert Powers
{"title":"透视:基于核磁共振的代谢组学数据的使用和再利用:哪些有效,哪些仍具挑战性。","authors":"Goncalo Jorge Gouveia, Thomas Head, Leo L Cheng, Chaevien S Clendinen, John R Cort, Xiuxia Du, Arthur S Edison, Candace C Fleischer, Jeffrey Hoch, Nathaniel Mercaldo, Wimal Pathmasiri, Daniel Raftery, Tracey B Schock, Lloyd W Sumner, Panteleimon G Takis, Valérie Copié, Hamid R Eghbalnia, Robert Powers","doi":"10.1007/s11306-024-02090-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse.</p><p><strong>Aim of review: </strong>The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies.</p><p><strong>Key scientific concepts of review: </strong>We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 2","pages":"41"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perspective: use and reuse of NMR-based metabolomics data: what works and what remains challenging.\",\"authors\":\"Goncalo Jorge Gouveia, Thomas Head, Leo L Cheng, Chaevien S Clendinen, John R Cort, Xiuxia Du, Arthur S Edison, Candace C Fleischer, Jeffrey Hoch, Nathaniel Mercaldo, Wimal Pathmasiri, Daniel Raftery, Tracey B Schock, Lloyd W Sumner, Panteleimon G Takis, Valérie Copié, Hamid R Eghbalnia, Robert Powers\",\"doi\":\"10.1007/s11306-024-02090-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse.</p><p><strong>Aim of review: </strong>The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies.</p><p><strong>Key scientific concepts of review: </strong>We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.</p>\",\"PeriodicalId\":18506,\"journal\":{\"name\":\"Metabolomics\",\"volume\":\"20 2\",\"pages\":\"41\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11306-024-02090-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02090-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:美国国家癌症研究所(National Cancer Institute)于 2022 年 10 月发布了一份信息征询书(RFI;NOT-CA-23-007),就代谢组学数据的使用和再利用征求意见。该 RFI 旨在收集有关代谢组学数据存储、管理和使用/再利用最佳实践的意见:北美代谢组学协会 (MANA) 内的核磁共振 (NMR) 兴趣小组就基于 NMR 的代谢组学数据集以及在较小程度上基于质谱 (MS) 的代谢组学数据集的存放、归档、使用和再利用提出了一系列建议。这些建议建立在 MANA 内部代谢组学研究人员的集体经验基础之上,他们正在生成、处理和分析各种代谢组学数据集,研究范围涵盖实验(样品处理和制备、NMR/MS 代谢组学数据采集、处理和光谱分析)到计算(光谱处理自动化、单变量和多变量统计分析、代谢物预测和鉴定、多组学数据整合等):我们概述了我们对代谢组学数据的使用和再利用的集体看法,并就最佳实践提出了若干建议,旨在鼓励研究人员加强努力,最大限度地发挥代谢组学数据的效用,实现多组学数据整合,并提高代谢组学研究的整体科学影响力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perspective: use and reuse of NMR-based metabolomics data: what works and what remains challenging.

Background: The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse.

Aim of review: The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies.

Key scientific concepts of review: We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信