Zachary Gajewski, Philip McEmurray, Jeremy Wojdak, Cari McGregor, Lily Zeller, Hannah Cooper, Lisa K. Belden, Skylar Hopkins
{"title":"非随机觅食和资源分布会影响宿主密度、接触率和寄生虫传播之间的关系。","authors":"Zachary Gajewski, Philip McEmurray, Jeremy Wojdak, Cari McGregor, Lily Zeller, Hannah Cooper, Lisa K. Belden, Skylar Hopkins","doi":"10.1111/ele.14385","DOIUrl":null,"url":null,"abstract":"<p>Nonrandom foraging can cause animals to aggregate in resource dense areas, increasing host density, contact rates and pathogen transmission, but when should nonrandom foraging and resource distributions also have density-independent effects? Here, we used a factorial experiment with constant resource and host densities to quantify host contact rates across seven resource distributions. We also used an agent-based model to compare pathogen transmission when host movement was based on random foraging, optimal foraging or something between those states. Nonrandom foraging strongly depressed contact rates and transmission relative to the classic random movement assumptions used in most epidemiological models. Given nonrandom foraging in the agent-based model and experiment, contact rates and transmission increased with resource aggregation and average distance to resource patches due to increased host movement in search of resources. Overall, we describe three density-independent mechanisms by which host behaviour and resource distributions alter contact rate functions and pathogen transmission.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14385","citationCount":"0","resultStr":"{\"title\":\"Nonrandom foraging and resource distributions affect the relationships between host density, contact rates and parasite transmission\",\"authors\":\"Zachary Gajewski, Philip McEmurray, Jeremy Wojdak, Cari McGregor, Lily Zeller, Hannah Cooper, Lisa K. Belden, Skylar Hopkins\",\"doi\":\"10.1111/ele.14385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonrandom foraging can cause animals to aggregate in resource dense areas, increasing host density, contact rates and pathogen transmission, but when should nonrandom foraging and resource distributions also have density-independent effects? Here, we used a factorial experiment with constant resource and host densities to quantify host contact rates across seven resource distributions. We also used an agent-based model to compare pathogen transmission when host movement was based on random foraging, optimal foraging or something between those states. Nonrandom foraging strongly depressed contact rates and transmission relative to the classic random movement assumptions used in most epidemiological models. Given nonrandom foraging in the agent-based model and experiment, contact rates and transmission increased with resource aggregation and average distance to resource patches due to increased host movement in search of resources. Overall, we describe three density-independent mechanisms by which host behaviour and resource distributions alter contact rate functions and pathogen transmission.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14385\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14385\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14385","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Nonrandom foraging and resource distributions affect the relationships between host density, contact rates and parasite transmission
Nonrandom foraging can cause animals to aggregate in resource dense areas, increasing host density, contact rates and pathogen transmission, but when should nonrandom foraging and resource distributions also have density-independent effects? Here, we used a factorial experiment with constant resource and host densities to quantify host contact rates across seven resource distributions. We also used an agent-based model to compare pathogen transmission when host movement was based on random foraging, optimal foraging or something between those states. Nonrandom foraging strongly depressed contact rates and transmission relative to the classic random movement assumptions used in most epidemiological models. Given nonrandom foraging in the agent-based model and experiment, contact rates and transmission increased with resource aggregation and average distance to resource patches due to increased host movement in search of resources. Overall, we describe three density-independent mechanisms by which host behaviour and resource distributions alter contact rate functions and pathogen transmission.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.