涉及复阶 $$\psi $$ -Hilfer 分数导数的非线性微分方程系统的全局优化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"涉及复阶 $$\\psi $$ -Hilfer 分数导数的非线性微分方程系统的全局优化","authors":"","doi":"10.1007/s13540-024-00260-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, a class of cyclic (noncyclic) operators of condensing nature are defined on Banach spaces via a pair of shifting distance functions. The best proximity point (pair) results are manifested using the concept of measure of noncompactness (MNC) for the said operators. The obtained best proximity point result is used to demonstrate existence of optimum solutions of a system of differential equations involving <span> <span>\\(\\psi \\)</span> </span>-Hilfer fractional derivatives of complex order.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global optimization of a nonlinear system of differential equations involving $$\\\\psi $$ -Hilfer fractional derivatives of complex order\",\"authors\":\"\",\"doi\":\"10.1007/s13540-024-00260-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, a class of cyclic (noncyclic) operators of condensing nature are defined on Banach spaces via a pair of shifting distance functions. The best proximity point (pair) results are manifested using the concept of measure of noncompactness (MNC) for the said operators. The obtained best proximity point result is used to demonstrate existence of optimum solutions of a system of differential equations involving <span> <span>\\\\(\\\\psi \\\\)</span> </span>-Hilfer fractional derivatives of complex order.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00260-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00260-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文通过一对移动距离函数,在巴拿赫空间上定义了一类具有凝聚性质的循环(非循环)算子。利用上述算子的非紧密性度量(MNC)概念,体现了最佳邻近点(对)结果。所获得的最佳邻近点结果被用来证明涉及复阶 \(\psi \) -Hilfer 分数导数的微分方程系的最优解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global optimization of a nonlinear system of differential equations involving $$\psi $$ -Hilfer fractional derivatives of complex order

Abstract

In this paper, a class of cyclic (noncyclic) operators of condensing nature are defined on Banach spaces via a pair of shifting distance functions. The best proximity point (pair) results are manifested using the concept of measure of noncompactness (MNC) for the said operators. The obtained best proximity point result is used to demonstrate existence of optimum solutions of a system of differential equations involving \(\psi \) -Hilfer fractional derivatives of complex order.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信