{"title":"涉及复阶 $$\\psi $$ -Hilfer 分数导数的非线性微分方程系统的全局优化","authors":"","doi":"10.1007/s13540-024-00260-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, a class of cyclic (noncyclic) operators of condensing nature are defined on Banach spaces via a pair of shifting distance functions. The best proximity point (pair) results are manifested using the concept of measure of noncompactness (MNC) for the said operators. The obtained best proximity point result is used to demonstrate existence of optimum solutions of a system of differential equations involving <span> <span>\\(\\psi \\)</span> </span>-Hilfer fractional derivatives of complex order.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global optimization of a nonlinear system of differential equations involving $$\\\\psi $$ -Hilfer fractional derivatives of complex order\",\"authors\":\"\",\"doi\":\"10.1007/s13540-024-00260-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, a class of cyclic (noncyclic) operators of condensing nature are defined on Banach spaces via a pair of shifting distance functions. The best proximity point (pair) results are manifested using the concept of measure of noncompactness (MNC) for the said operators. The obtained best proximity point result is used to demonstrate existence of optimum solutions of a system of differential equations involving <span> <span>\\\\(\\\\psi \\\\)</span> </span>-Hilfer fractional derivatives of complex order.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00260-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00260-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Global optimization of a nonlinear system of differential equations involving $$\psi $$ -Hilfer fractional derivatives of complex order
Abstract
In this paper, a class of cyclic (noncyclic) operators of condensing nature are defined on Banach spaces via a pair of shifting distance functions. The best proximity point (pair) results are manifested using the concept of measure of noncompactness (MNC) for the said operators. The obtained best proximity point result is used to demonstrate existence of optimum solutions of a system of differential equations involving \(\psi \)-Hilfer fractional derivatives of complex order.