药片蠕虫的生物碱化学:Typhloglomeris Verhoeff, 1898(倍足纲,蜚蠊目,蜚蠊科)两个物种的防御性分泌物

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Michaela Bodner, Dragan Antić, Zvezdana Jovanović, Günther Raspotnig, Bojan Ilić, Luka Lučić, Slobodan Makarov
{"title":"药片蠕虫的生物碱化学:Typhloglomeris Verhoeff, 1898(倍足纲,蜚蠊目,蜚蠊科)两个物种的防御性分泌物","authors":"Michaela Bodner,&nbsp;Dragan Antić,&nbsp;Zvezdana Jovanović,&nbsp;Günther Raspotnig,&nbsp;Bojan Ilić,&nbsp;Luka Lučić,&nbsp;Slobodan Makarov","doi":"10.1007/s00049-024-00400-x","DOIUrl":null,"url":null,"abstract":"<div><p>Millipedes of the order Glomerida are known to produce quinazolinone alkaloids as defensive substances. However, chemical data are rather scarce and all hitherto available publications refer to a single glomeridan family, the Glomeridae. To contribute to the knowledge of the chemical ecology of glomeridans, we collected species, <i>Typhloglomeris coeca</i> Verhoeff, 1898 and <i>T. varunae</i> Makarov, Lučić, Tomić &amp; Karaman, 2003, from a second family – Glomeridellidae. The defensive exudates were extracted in methylene chloride and analyzed by gas chromatography-mass spectrometry. Our results show that the secretions of the two glomeridellids contain the quinazolinone alkaloid homoglomerin (2-ethyl-1-methylquinazolin-4(1H)-one) as the sole defensive constituent. This report provides initial data on the chemoprofiles of members of the family Glomeridellidae and supports the phenomenon of chemical homogeneity of glomeridan defensive secretions. So far, all analyzed representatives of the order possess glomerin and/or homoglomerin as defensive equipment. The phylogenetic origin of alkaloidal compounds in the secretions of millipedes in general, and particularly the origin of quinazolinone alkaloids in Glomerida is discussed. Considering that the quinazolinone alkaloid defensive secretions may be the same (or very similar) in other Glomerida, our results have important implication for further studies of defensive secretions in these arthropods. Also, as data are available only for a limited number of glomeridan and colobognathan species, additional analyses are necessary to elucidate the evolution of alkaloid defensive secretion in Diplopoda.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 1","pages":"41 - 46"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-024-00400-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Alkaloid chemistry in pill-millipedes: Defensive secretion in two species of Typhloglomeris Verhoeff, 1898 (Diplopoda, Glomerida, Glomeridellidae)\",\"authors\":\"Michaela Bodner,&nbsp;Dragan Antić,&nbsp;Zvezdana Jovanović,&nbsp;Günther Raspotnig,&nbsp;Bojan Ilić,&nbsp;Luka Lučić,&nbsp;Slobodan Makarov\",\"doi\":\"10.1007/s00049-024-00400-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Millipedes of the order Glomerida are known to produce quinazolinone alkaloids as defensive substances. However, chemical data are rather scarce and all hitherto available publications refer to a single glomeridan family, the Glomeridae. To contribute to the knowledge of the chemical ecology of glomeridans, we collected species, <i>Typhloglomeris coeca</i> Verhoeff, 1898 and <i>T. varunae</i> Makarov, Lučić, Tomić &amp; Karaman, 2003, from a second family – Glomeridellidae. The defensive exudates were extracted in methylene chloride and analyzed by gas chromatography-mass spectrometry. Our results show that the secretions of the two glomeridellids contain the quinazolinone alkaloid homoglomerin (2-ethyl-1-methylquinazolin-4(1H)-one) as the sole defensive constituent. This report provides initial data on the chemoprofiles of members of the family Glomeridellidae and supports the phenomenon of chemical homogeneity of glomeridan defensive secretions. So far, all analyzed representatives of the order possess glomerin and/or homoglomerin as defensive equipment. The phylogenetic origin of alkaloidal compounds in the secretions of millipedes in general, and particularly the origin of quinazolinone alkaloids in Glomerida is discussed. Considering that the quinazolinone alkaloid defensive secretions may be the same (or very similar) in other Glomerida, our results have important implication for further studies of defensive secretions in these arthropods. Also, as data are available only for a limited number of glomeridan and colobognathan species, additional analyses are necessary to elucidate the evolution of alkaloid defensive secretion in Diplopoda.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"34 1\",\"pages\":\"41 - 46\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00049-024-00400-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-024-00400-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-024-00400-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已知蜚蠊目千足虫会产生喹唑啉酮生物碱作为防御物质。然而,化学数据却相当稀少,迄今为止所有的出版物都只涉及到一个睑裂目家族--睑裂蜓科(Glomeridae)。为了帮助人们了解团扇藻的化学生态学,我们收集了团扇藻科(Glomeridellidae)的另一个物种:Typhloglomeris coeca Verhoeff, 1898 和 T. varunae Makarov, Lučić, Tomić & Karaman, 2003。用二氯甲烷提取防御性渗出物,并用气相色谱-质谱法进行分析。结果表明,这两种团扇藻的分泌物中含有喹唑啉酮生物碱 homoglomerin(2-乙基-1-甲基喹唑啉-4(1H)-酮),是唯一的防御性成分。本报告提供了有关团扇藻科成员化学成分的初步数据,并支持团扇藻防御性分泌物化学成分均一的现象。迄今为止,所有分析过的该目代表物种都拥有肾小球蛋白和/或同源肾小球蛋白作为防御装备。本文讨论了千足类分泌物中生物碱化合物的系统发育起源,特别是喹唑啉酮生物碱在蜚蠊目中的起源。考虑到喹唑啉酮类生物碱的防御性分泌物可能与其他蜚蠊类相同(或非常相似),我们的研究结果对进一步研究这些节肢动物的防御性分泌物具有重要意义。此外,由于目前仅能获得有限数量的团扇目和柱尾目物种的数据,因此有必要进行更多的分析,以阐明双足纲生物碱类防御性分泌物的进化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Alkaloid chemistry in pill-millipedes: Defensive secretion in two species of Typhloglomeris Verhoeff, 1898 (Diplopoda, Glomerida, Glomeridellidae)

Alkaloid chemistry in pill-millipedes: Defensive secretion in two species of Typhloglomeris Verhoeff, 1898 (Diplopoda, Glomerida, Glomeridellidae)

Millipedes of the order Glomerida are known to produce quinazolinone alkaloids as defensive substances. However, chemical data are rather scarce and all hitherto available publications refer to a single glomeridan family, the Glomeridae. To contribute to the knowledge of the chemical ecology of glomeridans, we collected species, Typhloglomeris coeca Verhoeff, 1898 and T. varunae Makarov, Lučić, Tomić & Karaman, 2003, from a second family – Glomeridellidae. The defensive exudates were extracted in methylene chloride and analyzed by gas chromatography-mass spectrometry. Our results show that the secretions of the two glomeridellids contain the quinazolinone alkaloid homoglomerin (2-ethyl-1-methylquinazolin-4(1H)-one) as the sole defensive constituent. This report provides initial data on the chemoprofiles of members of the family Glomeridellidae and supports the phenomenon of chemical homogeneity of glomeridan defensive secretions. So far, all analyzed representatives of the order possess glomerin and/or homoglomerin as defensive equipment. The phylogenetic origin of alkaloidal compounds in the secretions of millipedes in general, and particularly the origin of quinazolinone alkaloids in Glomerida is discussed. Considering that the quinazolinone alkaloid defensive secretions may be the same (or very similar) in other Glomerida, our results have important implication for further studies of defensive secretions in these arthropods. Also, as data are available only for a limited number of glomeridan and colobognathan species, additional analyses are necessary to elucidate the evolution of alkaloid defensive secretion in Diplopoda.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信