{"title":"基于动态协商的分布式 EMPC,异构电动汽车编队的共识速度各不相同","authors":"Defeng He;Jie Luo;Haiping Du","doi":"10.1109/TCST.2024.3371620","DOIUrl":null,"url":null,"abstract":"This work addresses the issue of optimizing energy consumption and coordination of heterogeneous electric vehicle (EV) platoons. To achieve this, we propose a novel approach called dynamic negotiation (DN)-based distributed economic model predictive control (DEMPC) for the platoon. This method is tailored to the heterogeneous characteristics and coordination requirements of EVs, dynamically optimizing consensus speed trajectories through online negotiation of a multiobjective utopia point. Considering factors such as electricity consumption and travel time, the optimization yields an optimal accessible speed for the platoon. To ensure the EVs cooperatively follow the optimal accessible speed while minimizing their self-interested economical cost (i.e., energy savings), we design the local EMPC of each EV, incorporating contractive constraints. The simulation results demonstrate the advantages of the proposed method in electricity savings and battery lifespan extension.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1495-1503"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Negotiation-Based Distributed EMPC With Varying Consensus Speeds of Heterogeneous Electric Vehicle Platoons\",\"authors\":\"Defeng He;Jie Luo;Haiping Du\",\"doi\":\"10.1109/TCST.2024.3371620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the issue of optimizing energy consumption and coordination of heterogeneous electric vehicle (EV) platoons. To achieve this, we propose a novel approach called dynamic negotiation (DN)-based distributed economic model predictive control (DEMPC) for the platoon. This method is tailored to the heterogeneous characteristics and coordination requirements of EVs, dynamically optimizing consensus speed trajectories through online negotiation of a multiobjective utopia point. Considering factors such as electricity consumption and travel time, the optimization yields an optimal accessible speed for the platoon. To ensure the EVs cooperatively follow the optimal accessible speed while minimizing their self-interested economical cost (i.e., energy savings), we design the local EMPC of each EV, incorporating contractive constraints. The simulation results demonstrate the advantages of the proposed method in electricity savings and battery lifespan extension.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 4\",\"pages\":\"1495-1503\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10463607/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10463607/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dynamic Negotiation-Based Distributed EMPC With Varying Consensus Speeds of Heterogeneous Electric Vehicle Platoons
This work addresses the issue of optimizing energy consumption and coordination of heterogeneous electric vehicle (EV) platoons. To achieve this, we propose a novel approach called dynamic negotiation (DN)-based distributed economic model predictive control (DEMPC) for the platoon. This method is tailored to the heterogeneous characteristics and coordination requirements of EVs, dynamically optimizing consensus speed trajectories through online negotiation of a multiobjective utopia point. Considering factors such as electricity consumption and travel time, the optimization yields an optimal accessible speed for the platoon. To ensure the EVs cooperatively follow the optimal accessible speed while minimizing their self-interested economical cost (i.e., energy savings), we design the local EMPC of each EV, incorporating contractive constraints. The simulation results demonstrate the advantages of the proposed method in electricity savings and battery lifespan extension.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.