双(苯并咪唑)配位二氯化镍络合物在吡啶或氨蒸气吸附作用下的变色行为

IF 1.6 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Tatsunari Murakami, Takahiro Homma, Atsunobu Masuno, Masaaki Okazaki, Shun Ohta
{"title":"双(苯并咪唑)配位二氯化镍络合物在吡啶或氨蒸气吸附作用下的变色行为","authors":"Tatsunari Murakami,&nbsp;Takahiro Homma,&nbsp;Atsunobu Masuno,&nbsp;Masaaki Okazaki,&nbsp;Shun Ohta","doi":"10.1007/s11243-024-00576-9","DOIUrl":null,"url":null,"abstract":"<div><p>Pyridine (py) and ammonia (NH<sub>3</sub>) have been widely used as raw materials in manufacturing processes; however, both are volatile, and their vapor is detrimental to human health. To limit the exposure of those who work with py and NH<sub>3</sub> vapor, the development of effective techniques to sense atmospheric levels of py and NH<sub>3</sub> in order to decrease their concentration when required is important. In the present study, we found that crystals of bis(benzimidazole)NiCl<sub>2</sub> (<b>1</b>, bis(benzimidazole) = phenylbis(benzimidazol-2-yl)methane)) adsorb py and NH<sub>3</sub> vapor with a concomitant color change from purple to green (py) or light purple (NH<sub>3</sub>). Powder X-ray diffraction, UV–Vis diffuse reflectance, and IR spectroscopic studies revealed that these color changes are induced by the formation of <i>trans-</i>[NiCl<sub>2</sub>(py)<sub>4</sub>] (<b>2</b>) or [Ni(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>2</sub> (<b>3</b>). A time-dependent analysis of the py-vapor adsorption indicated that the formation of <b>2</b> from <b>1</b> proceeds non-uniformly in the solid. Crystals of <b>1</b> were furthermore found to adsorb py or NH<sub>3</sub> even at low concentrations (py: ~ 6 ppm; NH<sub>3</sub>: ~ 33 ppm), albeit that a color change was not observed in these cases.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"49 4","pages":"229 - 235"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color-change behavior of a bis(benzimidazole)-coordinated nickel-dichlorido complex induced by the adsorption of pyridine or ammonia vapor\",\"authors\":\"Tatsunari Murakami,&nbsp;Takahiro Homma,&nbsp;Atsunobu Masuno,&nbsp;Masaaki Okazaki,&nbsp;Shun Ohta\",\"doi\":\"10.1007/s11243-024-00576-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pyridine (py) and ammonia (NH<sub>3</sub>) have been widely used as raw materials in manufacturing processes; however, both are volatile, and their vapor is detrimental to human health. To limit the exposure of those who work with py and NH<sub>3</sub> vapor, the development of effective techniques to sense atmospheric levels of py and NH<sub>3</sub> in order to decrease their concentration when required is important. In the present study, we found that crystals of bis(benzimidazole)NiCl<sub>2</sub> (<b>1</b>, bis(benzimidazole) = phenylbis(benzimidazol-2-yl)methane)) adsorb py and NH<sub>3</sub> vapor with a concomitant color change from purple to green (py) or light purple (NH<sub>3</sub>). Powder X-ray diffraction, UV–Vis diffuse reflectance, and IR spectroscopic studies revealed that these color changes are induced by the formation of <i>trans-</i>[NiCl<sub>2</sub>(py)<sub>4</sub>] (<b>2</b>) or [Ni(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>2</sub> (<b>3</b>). A time-dependent analysis of the py-vapor adsorption indicated that the formation of <b>2</b> from <b>1</b> proceeds non-uniformly in the solid. Crystals of <b>1</b> were furthermore found to adsorb py or NH<sub>3</sub> even at low concentrations (py: ~ 6 ppm; NH<sub>3</sub>: ~ 33 ppm), albeit that a color change was not observed in these cases.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"49 4\",\"pages\":\"229 - 235\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-024-00576-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-024-00576-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

摘要 吡啶(py)和氨(NH3)已被广泛用作生产过程中的原材料,但这两种物质都具有挥发性,其蒸气对人体健康有害。为了限制工作中接触吡和 NH3 蒸汽的人员,必须开发有效的技术来感知大气中吡和 NH3 的浓度水平,以便在需要时降低其浓度。在本研究中,我们发现双(苯并咪唑)NiCl2 晶体(1,双(苯并咪唑)=苯基双(苯并咪唑-2-基)甲烷)能吸附 py 和 NH3 蒸汽,同时颜色从紫色变为绿色(py)或浅紫色(NH3)。粉末 X 射线衍射、紫外可见光漫反射和红外光谱研究表明,这些颜色变化是由反式[NiCl2(py)4](2)或[Ni(NH3)6]Cl2(3)的形成引起的。对吡蒸气吸附随时间变化的分析表明,固体中 1 形成 2 的过程并不均匀。此外,还发现即使在低浓度下(py:约 6 ppm;NH3:约 33 ppm),1 晶体也能吸附 py 或 NH3,尽管在这些情况下没有观察到颜色变化。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Color-change behavior of a bis(benzimidazole)-coordinated nickel-dichlorido complex induced by the adsorption of pyridine or ammonia vapor

Color-change behavior of a bis(benzimidazole)-coordinated nickel-dichlorido complex induced by the adsorption of pyridine or ammonia vapor

Pyridine (py) and ammonia (NH3) have been widely used as raw materials in manufacturing processes; however, both are volatile, and their vapor is detrimental to human health. To limit the exposure of those who work with py and NH3 vapor, the development of effective techniques to sense atmospheric levels of py and NH3 in order to decrease their concentration when required is important. In the present study, we found that crystals of bis(benzimidazole)NiCl2 (1, bis(benzimidazole) = phenylbis(benzimidazol-2-yl)methane)) adsorb py and NH3 vapor with a concomitant color change from purple to green (py) or light purple (NH3). Powder X-ray diffraction, UV–Vis diffuse reflectance, and IR spectroscopic studies revealed that these color changes are induced by the formation of trans-[NiCl2(py)4] (2) or [Ni(NH3)6]Cl2 (3). A time-dependent analysis of the py-vapor adsorption indicated that the formation of 2 from 1 proceeds non-uniformly in the solid. Crystals of 1 were furthermore found to adsorb py or NH3 even at low concentrations (py: ~ 6 ppm; NH3: ~ 33 ppm), albeit that a color change was not observed in these cases.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transition Metal Chemistry
Transition Metal Chemistry 化学-无机化学与核化学
CiteScore
3.60
自引率
0.00%
发文量
32
审稿时长
1.3 months
期刊介绍: Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc. Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信