Albertus Johannes Malan;Pol Jané-Soneira;Felix Strehle;Sören Hohmann
{"title":"具有无扰动母线的直流微电网中基于无源状态的功率共享和电压调节","authors":"Albertus Johannes Malan;Pol Jané-Soneira;Felix Strehle;Sören Hohmann","doi":"10.1109/TCST.2024.3372308","DOIUrl":null,"url":null,"abstract":"In this article, we propose a novel four-stage distributed controller for a dc microgrid that achieves proportional power sharing and average voltage regulation for the voltages at actuated and unactuated buses. The controller is presented for a dc microgrid comprising multiple distributed generation units (DGUs) with time-varying actuation states, dynamic \n<inline-formula> <tex-math>$RLC$ </tex-math></inline-formula>\n lines, nonlinear constant impedance, current, and power (ZIP) loads, and a time-varying network topology. The controller comprising a nonlinear gain, proportional–integral (PI) controllers, and two dynamic distributed averaging stages is designed for asymptotic stability. This constitutes deriving passivity properties for the dc microgrid, along with each of the controller subsystems. Thereafter, design parameters are found through a passivity-based optimization using the worst-case subsystem properties. The resulting closed loop is robust against DGU actuation changes, network topology changes, and microgrid parameter changes. The stability and robustness of the proposed control are verified via simulations.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1410-1425"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10471262","citationCount":"0","resultStr":"{\"title\":\"Passivity-Based Power Sharing and Voltage Regulation in DC Microgrids With Unactuated Buses\",\"authors\":\"Albertus Johannes Malan;Pol Jané-Soneira;Felix Strehle;Sören Hohmann\",\"doi\":\"10.1109/TCST.2024.3372308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a novel four-stage distributed controller for a dc microgrid that achieves proportional power sharing and average voltage regulation for the voltages at actuated and unactuated buses. The controller is presented for a dc microgrid comprising multiple distributed generation units (DGUs) with time-varying actuation states, dynamic \\n<inline-formula> <tex-math>$RLC$ </tex-math></inline-formula>\\n lines, nonlinear constant impedance, current, and power (ZIP) loads, and a time-varying network topology. The controller comprising a nonlinear gain, proportional–integral (PI) controllers, and two dynamic distributed averaging stages is designed for asymptotic stability. This constitutes deriving passivity properties for the dc microgrid, along with each of the controller subsystems. Thereafter, design parameters are found through a passivity-based optimization using the worst-case subsystem properties. The resulting closed loop is robust against DGU actuation changes, network topology changes, and microgrid parameter changes. The stability and robustness of the proposed control are verified via simulations.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 4\",\"pages\":\"1410-1425\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10471262\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10471262/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10471262/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Passivity-Based Power Sharing and Voltage Regulation in DC Microgrids With Unactuated Buses
In this article, we propose a novel four-stage distributed controller for a dc microgrid that achieves proportional power sharing and average voltage regulation for the voltages at actuated and unactuated buses. The controller is presented for a dc microgrid comprising multiple distributed generation units (DGUs) with time-varying actuation states, dynamic
$RLC$
lines, nonlinear constant impedance, current, and power (ZIP) loads, and a time-varying network topology. The controller comprising a nonlinear gain, proportional–integral (PI) controllers, and two dynamic distributed averaging stages is designed for asymptotic stability. This constitutes deriving passivity properties for the dc microgrid, along with each of the controller subsystems. Thereafter, design parameters are found through a passivity-based optimization using the worst-case subsystem properties. The resulting closed loop is robust against DGU actuation changes, network topology changes, and microgrid parameter changes. The stability and robustness of the proposed control are verified via simulations.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.