{"title":"推进诊断:评估基于纳米粒子的免疫测定作为疾病确认的 PCR 替代品的潜力","authors":"Aditya Kurdekar, Venkataramaniah Kamisetti","doi":"10.2174/0115734110287852240228064645","DOIUrl":null,"url":null,"abstract":": In diagnostic technologies, searching for quick, accurate, and cost-efficient ways to confirm diseases has prompted the investigation of alternative methodologies to classic PCR-based tests. This article delves into the growing field of nanoparticle-based immunoassays, offering a comprehensive evaluation of their potential as viable alternatives to PCR for disease diagnostics. We discuss the basic principles of nanoparticle-based immunoassays, highlighting their distinctive capacity to combine the specialized binding characteristics of antibodies with the improved detection capacities of nanoparticles. The article compares the performance attributes of nanoparticle-based immunoassays compared to PCR, focusing on sensitivity, specificity, and detection speed. We further delve into a novel diagnostic technology, immuno-PCR, which integrates the strengths of immunoassays and PCR techniques. Healthcare systems and stakeholders must comprehend and implement novel diagnostic procedures emphasizing accuracy and sensitivity as the diagnostic landscape advances globally. This review contributes to the advancement of diagnostics by synthesizing current research and suggesting future directions for development. It highlights the transformative potential of current and emerging methods in shaping the future of disease diagnostics.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"291 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Diagnostics: Evaluating the Potential of Nanoparticle-Based Immunoassays as PCR Alternatives for Disease Confirmation\",\"authors\":\"Aditya Kurdekar, Venkataramaniah Kamisetti\",\"doi\":\"10.2174/0115734110287852240228064645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In diagnostic technologies, searching for quick, accurate, and cost-efficient ways to confirm diseases has prompted the investigation of alternative methodologies to classic PCR-based tests. This article delves into the growing field of nanoparticle-based immunoassays, offering a comprehensive evaluation of their potential as viable alternatives to PCR for disease diagnostics. We discuss the basic principles of nanoparticle-based immunoassays, highlighting their distinctive capacity to combine the specialized binding characteristics of antibodies with the improved detection capacities of nanoparticles. The article compares the performance attributes of nanoparticle-based immunoassays compared to PCR, focusing on sensitivity, specificity, and detection speed. We further delve into a novel diagnostic technology, immuno-PCR, which integrates the strengths of immunoassays and PCR techniques. Healthcare systems and stakeholders must comprehend and implement novel diagnostic procedures emphasizing accuracy and sensitivity as the diagnostic landscape advances globally. This review contributes to the advancement of diagnostics by synthesizing current research and suggesting future directions for development. It highlights the transformative potential of current and emerging methods in shaping the future of disease diagnostics.\",\"PeriodicalId\":10742,\"journal\":{\"name\":\"Current Analytical Chemistry\",\"volume\":\"291 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734110287852240228064645\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110287852240228064645","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advancing Diagnostics: Evaluating the Potential of Nanoparticle-Based Immunoassays as PCR Alternatives for Disease Confirmation
: In diagnostic technologies, searching for quick, accurate, and cost-efficient ways to confirm diseases has prompted the investigation of alternative methodologies to classic PCR-based tests. This article delves into the growing field of nanoparticle-based immunoassays, offering a comprehensive evaluation of their potential as viable alternatives to PCR for disease diagnostics. We discuss the basic principles of nanoparticle-based immunoassays, highlighting their distinctive capacity to combine the specialized binding characteristics of antibodies with the improved detection capacities of nanoparticles. The article compares the performance attributes of nanoparticle-based immunoassays compared to PCR, focusing on sensitivity, specificity, and detection speed. We further delve into a novel diagnostic technology, immuno-PCR, which integrates the strengths of immunoassays and PCR techniques. Healthcare systems and stakeholders must comprehend and implement novel diagnostic procedures emphasizing accuracy and sensitivity as the diagnostic landscape advances globally. This review contributes to the advancement of diagnostics by synthesizing current research and suggesting future directions for development. It highlights the transformative potential of current and emerging methods in shaping the future of disease diagnostics.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.