不断变化的环境条件下的杀虫剂活性:荟萃分析

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY
Dexian Li, Kaisong Jiang, Xiaoxia Wang, Deguang Liu
{"title":"不断变化的环境条件下的杀虫剂活性:荟萃分析","authors":"Dexian Li, Kaisong Jiang, Xiaoxia Wang, Deguang Liu","doi":"10.1007/s10340-024-01766-1","DOIUrl":null,"url":null,"abstract":"<p>The effect of environmental change on activity of insecticides against insects has been greatly debated, and it is of significance to evaluate general patterns of change and explore the potential mechanisms that drive the changes in the context of global climate change. To that end, we constructed three multilevel meta-analyses and phylogenetically-corrected models based on 810 individual effect sizes of insecticide activity from 95 studies with variable levels of temperatures, humidities, and CO<sub>2</sub> concentrations. We found that increasing temperatures could overall increase the insecticidal activity of insecticides by 1.33 times. Increasing temperatures will boost the activity of some types of insecticides (e.g., acetylcholinesterase inhibitors), but decrease the activity of some other types (e.g., sodium channel modulators). Activities of stomach toxicants and fumigants are overall more sensitive to increasing temperatures than other insecticides. The sensitivity of insects in Hemiptera, Coleoptera, and Diptera to insecticides will also tend to increase significantly due to increasing temperatures. The magnitude of warming was found to have strong interactive effects with both insecticide class and insect group. Although moisture changes were showed to have no significant effects on insecticidal activity overall, our meta-regression analyses identified a positive relationship between insecticide activity and the magnitude of humidity change. No significant relationships between changes in CO<sub>2</sub> concentrations and insecticide activity were identified. Our results are critical in adaptation of insecticide application and pest management strategies, and forecasting insecticide risks (e.g., resistance development) across global climate regions under future warming conditions.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insecticide activity under changing environmental conditions: a meta-analysis\",\"authors\":\"Dexian Li, Kaisong Jiang, Xiaoxia Wang, Deguang Liu\",\"doi\":\"10.1007/s10340-024-01766-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of environmental change on activity of insecticides against insects has been greatly debated, and it is of significance to evaluate general patterns of change and explore the potential mechanisms that drive the changes in the context of global climate change. To that end, we constructed three multilevel meta-analyses and phylogenetically-corrected models based on 810 individual effect sizes of insecticide activity from 95 studies with variable levels of temperatures, humidities, and CO<sub>2</sub> concentrations. We found that increasing temperatures could overall increase the insecticidal activity of insecticides by 1.33 times. Increasing temperatures will boost the activity of some types of insecticides (e.g., acetylcholinesterase inhibitors), but decrease the activity of some other types (e.g., sodium channel modulators). Activities of stomach toxicants and fumigants are overall more sensitive to increasing temperatures than other insecticides. The sensitivity of insects in Hemiptera, Coleoptera, and Diptera to insecticides will also tend to increase significantly due to increasing temperatures. The magnitude of warming was found to have strong interactive effects with both insecticide class and insect group. Although moisture changes were showed to have no significant effects on insecticidal activity overall, our meta-regression analyses identified a positive relationship between insecticide activity and the magnitude of humidity change. No significant relationships between changes in CO<sub>2</sub> concentrations and insecticide activity were identified. Our results are critical in adaptation of insecticide application and pest management strategies, and forecasting insecticide risks (e.g., resistance development) across global climate regions under future warming conditions.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01766-1\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01766-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环境变化对杀虫剂杀虫活性的影响一直备受争议,在全球气候变化的背景下,评估变化的一般模式并探索驱动变化的潜在机制具有重要意义。为此,我们根据 95 项研究中 810 个杀虫剂活性的个体效应大小构建了三个多层次元分析和系统发育校正模型,这些研究的温度、湿度和二氧化碳浓度水平各不相同。我们发现,温度升高可使杀虫剂的杀虫活性总体提高 1.33 倍。温度升高会提高某些类型杀虫剂(如乙酰胆碱酯酶抑制剂)的活性,但会降低其他一些类型杀虫剂(如钠通道调节剂)的活性。与其他杀虫剂相比,胃毒剂和熏蒸剂的活性总体上对温度升高更敏感。半翅目、鞘翅目和双翅目昆虫对杀虫剂的敏感性也会因温度升高而显著增加。研究发现,气候变暖的程度与杀虫剂类别和昆虫种类都有很强的交互影响。尽管湿度变化总体上对杀虫活性没有显著影响,但我们的元回归分析发现,杀虫活性与湿度变化幅度之间存在正相关关系。二氧化碳浓度变化与杀虫活性之间没有明显关系。我们的研究结果对于适应未来气候变暖条件下的杀虫剂应用和害虫管理策略以及预测全球气候区域的杀虫剂风险(如抗药性发展)至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insecticide activity under changing environmental conditions: a meta-analysis

Insecticide activity under changing environmental conditions: a meta-analysis

The effect of environmental change on activity of insecticides against insects has been greatly debated, and it is of significance to evaluate general patterns of change and explore the potential mechanisms that drive the changes in the context of global climate change. To that end, we constructed three multilevel meta-analyses and phylogenetically-corrected models based on 810 individual effect sizes of insecticide activity from 95 studies with variable levels of temperatures, humidities, and CO2 concentrations. We found that increasing temperatures could overall increase the insecticidal activity of insecticides by 1.33 times. Increasing temperatures will boost the activity of some types of insecticides (e.g., acetylcholinesterase inhibitors), but decrease the activity of some other types (e.g., sodium channel modulators). Activities of stomach toxicants and fumigants are overall more sensitive to increasing temperatures than other insecticides. The sensitivity of insects in Hemiptera, Coleoptera, and Diptera to insecticides will also tend to increase significantly due to increasing temperatures. The magnitude of warming was found to have strong interactive effects with both insecticide class and insect group. Although moisture changes were showed to have no significant effects on insecticidal activity overall, our meta-regression analyses identified a positive relationship between insecticide activity and the magnitude of humidity change. No significant relationships between changes in CO2 concentrations and insecticide activity were identified. Our results are critical in adaptation of insecticide application and pest management strategies, and forecasting insecticide risks (e.g., resistance development) across global climate regions under future warming conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信