Neelabja Gayen, Srikanth Swamy, Sridhar Hari, Shirish H. Sonawane
{"title":"牛顿流体和非牛顿流体在 SMX 静态混合器中的层流混合","authors":"Neelabja Gayen, Srikanth Swamy, Sridhar Hari, Shirish H. Sonawane","doi":"10.1002/cjce.25232","DOIUrl":null,"url":null,"abstract":"<p>This report is focused on understanding the mixing performance of Newtonian and non-Newtonian fluids in an SMX static mixer through computational fluid dynamics (CFD) study in Simcenter STAR-CCM+. For this, the standard SMX mixer with four mixer elements of radius 26 mm was chosen. The aspect ratio (<i>L</i>/<i>D</i>) was taken as 1. The model constructed was compared using pressure drop ratio values available in literature. First, the design was validated for Newtonian fluid, then for shear-thinning fluid (non-Newtonian). Mixing patterns produced through particle tracking approach revealed how blending improved as the fluid moved downstream and interacted with increasing number of mixer elements. A sensitivity study was undertaken to investigate the effect of particle injection mechanism on the mixing process. Two injection methods, vertical and horizontal, were explored to check the influence of injection position on mixing. The results indicate that for the given configuration irrespective of the injection location, at least four mixing elements are needed to achieve good mixing for both Newtonian and shear-thinning fluids investigated in this study. Statistical reports were used to quantify mixing to understand the mixing behaviour for Newtonian and non-Newtonian fluids with change in Reynolds number. At high Reynolds number, non-Newtonian fluids exhibited better mixing abilities. Further, efforts were taken to optimize the various design parameters to produce the most optimum solution with a single mixer element for Newtonian fluid.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laminar mixing of Newtonian and non-Newtonian fluids in SMX static mixer\",\"authors\":\"Neelabja Gayen, Srikanth Swamy, Sridhar Hari, Shirish H. Sonawane\",\"doi\":\"10.1002/cjce.25232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This report is focused on understanding the mixing performance of Newtonian and non-Newtonian fluids in an SMX static mixer through computational fluid dynamics (CFD) study in Simcenter STAR-CCM+. For this, the standard SMX mixer with four mixer elements of radius 26 mm was chosen. The aspect ratio (<i>L</i>/<i>D</i>) was taken as 1. The model constructed was compared using pressure drop ratio values available in literature. First, the design was validated for Newtonian fluid, then for shear-thinning fluid (non-Newtonian). Mixing patterns produced through particle tracking approach revealed how blending improved as the fluid moved downstream and interacted with increasing number of mixer elements. A sensitivity study was undertaken to investigate the effect of particle injection mechanism on the mixing process. Two injection methods, vertical and horizontal, were explored to check the influence of injection position on mixing. The results indicate that for the given configuration irrespective of the injection location, at least four mixing elements are needed to achieve good mixing for both Newtonian and shear-thinning fluids investigated in this study. Statistical reports were used to quantify mixing to understand the mixing behaviour for Newtonian and non-Newtonian fluids with change in Reynolds number. At high Reynolds number, non-Newtonian fluids exhibited better mixing abilities. Further, efforts were taken to optimize the various design parameters to produce the most optimum solution with a single mixer element for Newtonian fluid.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25232\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25232","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Laminar mixing of Newtonian and non-Newtonian fluids in SMX static mixer
This report is focused on understanding the mixing performance of Newtonian and non-Newtonian fluids in an SMX static mixer through computational fluid dynamics (CFD) study in Simcenter STAR-CCM+. For this, the standard SMX mixer with four mixer elements of radius 26 mm was chosen. The aspect ratio (L/D) was taken as 1. The model constructed was compared using pressure drop ratio values available in literature. First, the design was validated for Newtonian fluid, then for shear-thinning fluid (non-Newtonian). Mixing patterns produced through particle tracking approach revealed how blending improved as the fluid moved downstream and interacted with increasing number of mixer elements. A sensitivity study was undertaken to investigate the effect of particle injection mechanism on the mixing process. Two injection methods, vertical and horizontal, were explored to check the influence of injection position on mixing. The results indicate that for the given configuration irrespective of the injection location, at least four mixing elements are needed to achieve good mixing for both Newtonian and shear-thinning fluids investigated in this study. Statistical reports were used to quantify mixing to understand the mixing behaviour for Newtonian and non-Newtonian fluids with change in Reynolds number. At high Reynolds number, non-Newtonian fluids exhibited better mixing abilities. Further, efforts were taken to optimize the various design parameters to produce the most optimum solution with a single mixer element for Newtonian fluid.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.