Vidyasagar P. Phase, Sharanabasappa S. Kammar, Chandrashekhar S. Munnolli, Yashwant S. Madansure, Ahmed A. Ibrahim, Khalid M. Batoo, Ram H. Kadam, Sagar E. Shirsath, Anil R. Shitre
{"title":"(1-x) Ni0.5Cu0.25Zn0.25Fe2O4 + (x) SrFe11Y1O19 磁性软硬铁氧体复合纳米粒子的应变和交换弹簧机制","authors":"Vidyasagar P. Phase, Sharanabasappa S. Kammar, Chandrashekhar S. Munnolli, Yashwant S. Madansure, Ahmed A. Ibrahim, Khalid M. Batoo, Ram H. Kadam, Sagar E. Shirsath, Anil R. Shitre","doi":"10.1002/ppsc.202300225","DOIUrl":null,"url":null,"abstract":"A mixture of soft–hard (S–H) ferrites with the general chemical formula (1-<i>x</i>) Ni<sub>0.5</sub>Cu<sub>0.25</sub>Zn<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> (NCZFO) + (<i>x</i>) SrFe<sub>11</sub>Y<sub>1</sub>O<sub>19</sub> (SFYO) is developed via sol-gel auto-combustion and their physical mixing. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, field emission scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy (HRTEM), vibrating sample magnetometry (VSM) and two-probe technique are used to examine the resultant materials. Rietveld refinement of XRD data confirms the co-existence of both soft and hard phases in the composites. The HRTEM and FESEM results confirm the nanocrystalline nature of the synthesized particles. Williamson-Hall method is employed to reveal the strain nature in soft and hard phases. VSM analysis shows considerable changes in the magnetic characteristics for the different composition of NCZFO and SFYO. The exchange-spring mechanism is discussed in the manuscript.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain and Exchange-Spring Mechanism of (1-x) Ni0.5Cu0.25Zn0.25Fe2O4 + (x) SrFe11Y1O19 Magnetically Soft–Hard Ferrite Composed Nanoparticles\",\"authors\":\"Vidyasagar P. Phase, Sharanabasappa S. Kammar, Chandrashekhar S. Munnolli, Yashwant S. Madansure, Ahmed A. Ibrahim, Khalid M. Batoo, Ram H. Kadam, Sagar E. Shirsath, Anil R. Shitre\",\"doi\":\"10.1002/ppsc.202300225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mixture of soft–hard (S–H) ferrites with the general chemical formula (1-<i>x</i>) Ni<sub>0.5</sub>Cu<sub>0.25</sub>Zn<sub>0.25</sub>Fe<sub>2</sub>O<sub>4</sub> (NCZFO) + (<i>x</i>) SrFe<sub>11</sub>Y<sub>1</sub>O<sub>19</sub> (SFYO) is developed via sol-gel auto-combustion and their physical mixing. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, field emission scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy (HRTEM), vibrating sample magnetometry (VSM) and two-probe technique are used to examine the resultant materials. Rietveld refinement of XRD data confirms the co-existence of both soft and hard phases in the composites. The HRTEM and FESEM results confirm the nanocrystalline nature of the synthesized particles. Williamson-Hall method is employed to reveal the strain nature in soft and hard phases. VSM analysis shows considerable changes in the magnetic characteristics for the different composition of NCZFO and SFYO. The exchange-spring mechanism is discussed in the manuscript.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202300225\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202300225","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Strain and Exchange-Spring Mechanism of (1-x) Ni0.5Cu0.25Zn0.25Fe2O4 + (x) SrFe11Y1O19 Magnetically Soft–Hard Ferrite Composed Nanoparticles
A mixture of soft–hard (S–H) ferrites with the general chemical formula (1-x) Ni0.5Cu0.25Zn0.25Fe2O4 (NCZFO) + (x) SrFe11Y1O19 (SFYO) is developed via sol-gel auto-combustion and their physical mixing. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, field emission scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy (HRTEM), vibrating sample magnetometry (VSM) and two-probe technique are used to examine the resultant materials. Rietveld refinement of XRD data confirms the co-existence of both soft and hard phases in the composites. The HRTEM and FESEM results confirm the nanocrystalline nature of the synthesized particles. Williamson-Hall method is employed to reveal the strain nature in soft and hard phases. VSM analysis shows considerable changes in the magnetic characteristics for the different composition of NCZFO and SFYO. The exchange-spring mechanism is discussed in the manuscript.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.