求助PDF
{"title":"具有 4 阶交映自变的 K3 曲面","authors":"Benedetta Piroddi","doi":"10.1002/mana.202300052","DOIUrl":null,"url":null,"abstract":"<p>Given <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, a K3 surface admitting a symplectic automorphism <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> of order 4, we describe the isometry <span></span><math>\n <semantics>\n <msup>\n <mi>τ</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$\\tau ^*$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>Z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^2(X,\\mathbb {Z})$</annotation>\n </semantics></math>. Having called <span></span><math>\n <semantics>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{Z}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{Y}$</annotation>\n </semantics></math>, respectively, the minimal resolutions of the quotient surfaces <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>=</mo>\n <mi>X</mi>\n <mo>/</mo>\n <msup>\n <mi>τ</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$Z=X/\\tau ^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>=</mo>\n <mi>X</mi>\n <mo>/</mo>\n <mi>τ</mi>\n </mrow>\n <annotation>$Y=X/\\tau$</annotation>\n </semantics></math>, we also describe the maps induced in cohomology by the rational quotient maps <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>→</mo>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n <mo>,</mo>\n <mspace></mspace>\n <mi>X</mi>\n <mo>→</mo>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n </mrow>\n <annotation>$X\\rightarrow \\tilde{Z},\\ X\\rightarrow \\tilde{Y}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n <mo>→</mo>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n </mrow>\n <annotation>$\\tilde{Y}\\rightarrow \\tilde{Z}$</annotation>\n </semantics></math>: With this knowledge, we are able to give a lattice-theoretic characterization of <span></span><math>\n <semantics>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{Z}$</annotation>\n </semantics></math>, and find the relation between the Néron–Severi lattices of <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n </mrow>\n <annotation>$X,\\tilde{Z}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{Y}$</annotation>\n </semantics></math> in the projective case. We also produce three different projective models for <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n </mrow>\n <annotation>$X,\\tilde{Z}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mover>\n <mi>Y</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{Y}$</annotation>\n </semantics></math>, each associated to a different polarization of degree 4 on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K3 surfaces with a symplectic automorphism of order 4\",\"authors\":\"Benedetta Piroddi\",\"doi\":\"10.1002/mana.202300052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>, a K3 surface admitting a symplectic automorphism <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math> of order 4, we describe the isometry <span></span><math>\\n <semantics>\\n <msup>\\n <mi>τ</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$\\\\tau ^*$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>Z</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^2(X,\\\\mathbb {Z})$</annotation>\\n </semantics></math>. Having called <span></span><math>\\n <semantics>\\n <mover>\\n <mi>Z</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{Z}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mover>\\n <mi>Y</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{Y}$</annotation>\\n </semantics></math>, respectively, the minimal resolutions of the quotient surfaces <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Z</mi>\\n <mo>=</mo>\\n <mi>X</mi>\\n <mo>/</mo>\\n <msup>\\n <mi>τ</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$Z=X/\\\\tau ^2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Y</mi>\\n <mo>=</mo>\\n <mi>X</mi>\\n <mo>/</mo>\\n <mi>τ</mi>\\n </mrow>\\n <annotation>$Y=X/\\\\tau$</annotation>\\n </semantics></math>, we also describe the maps induced in cohomology by the rational quotient maps <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>→</mo>\\n <mover>\\n <mi>Z</mi>\\n <mo>∼</mo>\\n </mover>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>X</mi>\\n <mo>→</mo>\\n <mover>\\n <mi>Y</mi>\\n <mo>∼</mo>\\n </mover>\\n </mrow>\\n <annotation>$X\\\\rightarrow \\\\tilde{Z},\\\\ X\\\\rightarrow \\\\tilde{Y}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mover>\\n <mi>Y</mi>\\n <mo>∼</mo>\\n </mover>\\n <mo>→</mo>\\n <mover>\\n <mi>Z</mi>\\n <mo>∼</mo>\\n </mover>\\n </mrow>\\n <annotation>$\\\\tilde{Y}\\\\rightarrow \\\\tilde{Z}$</annotation>\\n </semantics></math>: With this knowledge, we are able to give a lattice-theoretic characterization of <span></span><math>\\n <semantics>\\n <mover>\\n <mi>Z</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{Z}$</annotation>\\n </semantics></math>, and find the relation between the Néron–Severi lattices of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mover>\\n <mi>Z</mi>\\n <mo>∼</mo>\\n </mover>\\n </mrow>\\n <annotation>$X,\\\\tilde{Z}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mover>\\n <mi>Y</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{Y}$</annotation>\\n </semantics></math> in the projective case. We also produce three different projective models for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mover>\\n <mi>Z</mi>\\n <mo>∼</mo>\\n </mover>\\n </mrow>\\n <annotation>$X,\\\\tilde{Z}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mover>\\n <mi>Y</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{Y}$</annotation>\\n </semantics></math>, each associated to a different polarization of degree 4 on <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用