Xiaru Zhang, Ying Zheng, Gang Wang, Yuanlin Liu, Yang Wang, Xueyi Jiang, Yueqing Liang, Xinfeng Zhao, Ping Li, Yi Zhang
{"title":"受刺激的人脐带间充质干细胞通过 IL-32 介导的 P38 信号通路促进骨生成和颅骨再生","authors":"Xiaru Zhang, Ying Zheng, Gang Wang, Yuanlin Liu, Yang Wang, Xueyi Jiang, Yueqing Liang, Xinfeng Zhao, Ping Li, Yi Zhang","doi":"10.1155/2024/6693292","DOIUrl":null,"url":null,"abstract":"<i>Objective</i>. Our previous study found that it could significantly increase the expression of IL32 after stimulating the human umbilical cord mesenchymal stem cells (S-HuMSCs). However, its role on the osteogenesis and cranial bone regeneration is still largely unknown. Here, we investigated the possible mechanism of this effect. <i>Material and Methods</i>. A series of experiments, including single-cell sequencing, flow cytometry, quantitative real-time polymerase chain reaction, and western blotting, were carried out to evaluate the characteristic and adipogenic–osteogenic differentiation potential of IL-32 overexpression HuMSCs (IL-32<sup>high</sup>HuMSCs) through mediating the P38 signaling pathway. Moreover, a rat skull bone defect model was established and treated by directly injecting the IL-32<sup>high</sup>HuMSCs to conduct its role on the cranial bone regeneration. <i>Results</i>. In total, it found that compared to HuMSCs, IL32 was significantly increased and promoted the osteogenic differentiation (lower expressions of PPAR<i>γ</i>, Adiponectin, and C/EBP<i>α</i>, and increased expressions of RUNX2, ALP, BMP2, OPN, SP7, OCN, and DLX5) in the S-HuMSCs (<span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.289 9.2729\" width=\"19.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.658,0)\"></path></g></svg><span></span><span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.8711838 -8.6359 21.918 9.2729\" width=\"21.918pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.921,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,29.161,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.125,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.365,0)\"></path></g></svg>).</span></span> Meanwhile, the enhanced osteogenic differentiation of HuMSCs was recovered by IL-32 overexpression (IL-32<sup>high</sup>HuMSCs) through activating the P38 signaling pathway, like as the S-HuMSCs (<span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.289 9.2729\" width=\"19.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-81\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.658,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.8711838 -8.6359 21.918 9.2729\" width=\"21.918pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.921,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.161,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.125,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.365,0)\"><use xlink:href=\"#g113-54\"></use></g></svg>).</span></span> However, the osteogenic differentiation potential of IL-32<sup>high</sup>HuMSCs was significantly reversed by the P38 signaling pathway inhibitor SB203580 (<span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.289 9.2729\" width=\"19.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-81\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.658,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.8711838 -8.6359 21.918 9.2729\" width=\"21.918pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.921,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.161,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.125,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.365,0)\"><use xlink:href=\"#g113-54\"></use></g></svg>).</span></span> Additionally, the HuMSCs, S-HuMSCs, and IL-32<sup>high</sup>HuMSCs all presented adipogenic–osteogenic differentiation potential, with higher levels of CD73, CD90, and CD105, and lower CD14, CD34, and CD45 (<span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.289 9.2729\" width=\"19.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-81\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.658,0)\"></path></g></svg><span></span><span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.8711838 -8.6359 21.918 9.2729\" width=\"21.918pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.921,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.161,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.125,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.365,0)\"><use xlink:href=\"#g113-54\"></use></g></svg>).</span></span> Furthermore, these findings were confirmed by the rat skull bone defect model, in which the cranial bone regeneration was more pronounced in the IL-32<sup>high</sup>HuMSCs treated group compared to those in the HuMSCs group, with higher expressions of RUNX2, ALP, BMP2, and DLX5 (<span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.289 9.2729\" width=\"19.289pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-81\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.658,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"9.2729pt\" style=\"vertical-align:-0.6370001pt\" version=\"1.1\" viewbox=\"22.8711838 -8.6359 21.918 9.2729\" width=\"21.918pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.921,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.161,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.125,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.365,0)\"><use xlink:href=\"#g113-54\"></use></g></svg>).</span></span> <i>Conclusion</i>. We have confirmed that S-HuMSCs can enhance the osteogenesis and cranial bone regeneration through promoting IL-32-mediated P38 signaling pathway, which is proved that IL-32 may be a therapeutic target, or a biomarker for the treatment of cranial bone injuries.","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"116 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimulated Human Umbilical Cord Mesenchymal Stem Cells Enhance the Osteogenesis and Cranial Bone Regeneration through IL-32 Mediated P38 Signaling Pathway\",\"authors\":\"Xiaru Zhang, Ying Zheng, Gang Wang, Yuanlin Liu, Yang Wang, Xueyi Jiang, Yueqing Liang, Xinfeng Zhao, Ping Li, Yi Zhang\",\"doi\":\"10.1155/2024/6693292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Objective</i>. Our previous study found that it could significantly increase the expression of IL32 after stimulating the human umbilical cord mesenchymal stem cells (S-HuMSCs). However, its role on the osteogenesis and cranial bone regeneration is still largely unknown. Here, we investigated the possible mechanism of this effect. <i>Material and Methods</i>. A series of experiments, including single-cell sequencing, flow cytometry, quantitative real-time polymerase chain reaction, and western blotting, were carried out to evaluate the characteristic and adipogenic–osteogenic differentiation potential of IL-32 overexpression HuMSCs (IL-32<sup>high</sup>HuMSCs) through mediating the P38 signaling pathway. Moreover, a rat skull bone defect model was established and treated by directly injecting the IL-32<sup>high</sup>HuMSCs to conduct its role on the cranial bone regeneration. <i>Results</i>. In total, it found that compared to HuMSCs, IL32 was significantly increased and promoted the osteogenic differentiation (lower expressions of PPAR<i>γ</i>, Adiponectin, and C/EBP<i>α</i>, and increased expressions of RUNX2, ALP, BMP2, OPN, SP7, OCN, and DLX5) in the S-HuMSCs (<span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 19.289 9.2729\\\" width=\\\"19.289pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.658,0)\\\"></path></g></svg><span></span><span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.8711838 -8.6359 21.918 9.2729\\\" width=\\\"21.918pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.921,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,29.161,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.125,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.365,0)\\\"></path></g></svg>).</span></span> Meanwhile, the enhanced osteogenic differentiation of HuMSCs was recovered by IL-32 overexpression (IL-32<sup>high</sup>HuMSCs) through activating the P38 signaling pathway, like as the S-HuMSCs (<span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 19.289 9.2729\\\" width=\\\"19.289pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-81\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.658,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.8711838 -8.6359 21.918 9.2729\\\" width=\\\"21.918pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.921,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.161,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.125,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.365,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g></svg>).</span></span> However, the osteogenic differentiation potential of IL-32<sup>high</sup>HuMSCs was significantly reversed by the P38 signaling pathway inhibitor SB203580 (<span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 19.289 9.2729\\\" width=\\\"19.289pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-81\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.658,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.8711838 -8.6359 21.918 9.2729\\\" width=\\\"21.918pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.921,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.161,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.125,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.365,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g></svg>).</span></span> Additionally, the HuMSCs, S-HuMSCs, and IL-32<sup>high</sup>HuMSCs all presented adipogenic–osteogenic differentiation potential, with higher levels of CD73, CD90, and CD105, and lower CD14, CD34, and CD45 (<span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 19.289 9.2729\\\" width=\\\"19.289pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-81\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.658,0)\\\"></path></g></svg><span></span><span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.8711838 -8.6359 21.918 9.2729\\\" width=\\\"21.918pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.921,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.161,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.125,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.365,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g></svg>).</span></span> Furthermore, these findings were confirmed by the rat skull bone defect model, in which the cranial bone regeneration was more pronounced in the IL-32<sup>high</sup>HuMSCs treated group compared to those in the HuMSCs group, with higher expressions of RUNX2, ALP, BMP2, and DLX5 (<span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 19.289 9.2729\\\" width=\\\"19.289pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-81\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.658,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><span><svg height=\\\"9.2729pt\\\" style=\\\"vertical-align:-0.6370001pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.8711838 -8.6359 21.918 9.2729\\\" width=\\\"21.918pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.921,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.161,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.125,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.365,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g></svg>).</span></span> <i>Conclusion</i>. We have confirmed that S-HuMSCs can enhance the osteogenesis and cranial bone regeneration through promoting IL-32-mediated P38 signaling pathway, which is proved that IL-32 may be a therapeutic target, or a biomarker for the treatment of cranial bone injuries.\",\"PeriodicalId\":21962,\"journal\":{\"name\":\"Stem Cells International\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cells International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6693292\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/6693292","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Stimulated Human Umbilical Cord Mesenchymal Stem Cells Enhance the Osteogenesis and Cranial Bone Regeneration through IL-32 Mediated P38 Signaling Pathway
Objective. Our previous study found that it could significantly increase the expression of IL32 after stimulating the human umbilical cord mesenchymal stem cells (S-HuMSCs). However, its role on the osteogenesis and cranial bone regeneration is still largely unknown. Here, we investigated the possible mechanism of this effect. Material and Methods. A series of experiments, including single-cell sequencing, flow cytometry, quantitative real-time polymerase chain reaction, and western blotting, were carried out to evaluate the characteristic and adipogenic–osteogenic differentiation potential of IL-32 overexpression HuMSCs (IL-32highHuMSCs) through mediating the P38 signaling pathway. Moreover, a rat skull bone defect model was established and treated by directly injecting the IL-32highHuMSCs to conduct its role on the cranial bone regeneration. Results. In total, it found that compared to HuMSCs, IL32 was significantly increased and promoted the osteogenic differentiation (lower expressions of PPARγ, Adiponectin, and C/EBPα, and increased expressions of RUNX2, ALP, BMP2, OPN, SP7, OCN, and DLX5) in the S-HuMSCs (). Meanwhile, the enhanced osteogenic differentiation of HuMSCs was recovered by IL-32 overexpression (IL-32highHuMSCs) through activating the P38 signaling pathway, like as the S-HuMSCs (). However, the osteogenic differentiation potential of IL-32highHuMSCs was significantly reversed by the P38 signaling pathway inhibitor SB203580 (). Additionally, the HuMSCs, S-HuMSCs, and IL-32highHuMSCs all presented adipogenic–osteogenic differentiation potential, with higher levels of CD73, CD90, and CD105, and lower CD14, CD34, and CD45 (). Furthermore, these findings were confirmed by the rat skull bone defect model, in which the cranial bone regeneration was more pronounced in the IL-32highHuMSCs treated group compared to those in the HuMSCs group, with higher expressions of RUNX2, ALP, BMP2, and DLX5 ().Conclusion. We have confirmed that S-HuMSCs can enhance the osteogenesis and cranial bone regeneration through promoting IL-32-mediated P38 signaling pathway, which is proved that IL-32 may be a therapeutic target, or a biomarker for the treatment of cranial bone injuries.
期刊介绍:
Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials.
Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.