具有互联群落的高通量生物医学数据的协方差矩阵估计

IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY
Yifan Yang, Chixiang Chen, Shuo Chen
{"title":"具有互联群落的高通量生物医学数据的协方差矩阵估计","authors":"Yifan Yang, Chixiang Chen, Shuo Chen","doi":"10.1080/00031305.2024.2329681","DOIUrl":null,"url":null,"abstract":"Estimating a covariance matrix is central to high-dimensional data analysis. Empirical analyses of high-dimensional biomedical data, including genomics, proteomics, microbiome, and neuroimaging, am...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"20 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariance Matrix Estimation for High-Throughput Biomedical Data with Interconnected Communities\",\"authors\":\"Yifan Yang, Chixiang Chen, Shuo Chen\",\"doi\":\"10.1080/00031305.2024.2329681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating a covariance matrix is central to high-dimensional data analysis. Empirical analyses of high-dimensional biomedical data, including genomics, proteomics, microbiome, and neuroimaging, am...\",\"PeriodicalId\":50801,\"journal\":{\"name\":\"American Statistician\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Statistician\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2024.2329681\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2024.2329681","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

估计协方差矩阵是高维数据分析的核心。对包括基因组学、蛋白质组学、微生物组和神经影像学在内的高维生物医学数据进行实证分析,是一项非常重要的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariance Matrix Estimation for High-Throughput Biomedical Data with Interconnected Communities
Estimating a covariance matrix is central to high-dimensional data analysis. Empirical analyses of high-dimensional biomedical data, including genomics, proteomics, microbiome, and neuroimaging, am...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Statistician
American Statistician 数学-统计学与概率论
CiteScore
3.50
自引率
5.60%
发文量
64
审稿时长
>12 weeks
期刊介绍: Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信