时空光学相干断层扫描(STOC-T)中的多波长激光多普勒全息成像(MLDH)

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Dawid Borycki , Egidijus Auksorius , Piotr Węgrzyn , Kamil Liżewski , Sławomir Tomczewski , Ieva Žičkienė , Karolis Adomavičius , Karol Karnowski , Maciej Wojtkowski
{"title":"时空光学相干断层扫描(STOC-T)中的多波长激光多普勒全息成像(MLDH)","authors":"Dawid Borycki ,&nbsp;Egidijus Auksorius ,&nbsp;Piotr Węgrzyn ,&nbsp;Kamil Liżewski ,&nbsp;Sławomir Tomczewski ,&nbsp;Ieva Žičkienė ,&nbsp;Karolis Adomavičius ,&nbsp;Karol Karnowski ,&nbsp;Maciej Wojtkowski","doi":"10.1016/j.bbe.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Spatiotemporal optical coherence tomography (STOC-T) is the novel modality for high-speed, crosstalk- and aberration-free volumetric imaging of biological tissue <em>in vivo</em>. STOC-T extends the Fourier-Domain holographic Optical Coherence Tomography by the spatial phase modulation that enables the reduction of spatial coherence of the tunable laser. By reducing the spatial coherence of the laser, we suppress coherent noise, and, consequently, improve the imaging depth. Furthermore, we remove geometrical aberrations computationally in postprocessing. We recently demonstrated high-speed, high-resolution STOC-T of human retinal imaging <em>in vivo</em>. Here, we show that the dataset produced by STOC-T can be processed differently to reveal blood flow in the human retina <em>in vivo</em>. To render the blood flow, we first pre-process STOC-T holographic data to access the approximated information about the Doppler-shifted optical field backscattered from the sample. Then, we analyze it using methods from the laser Doppler flowmetry, namely, by analyzing the Doppler broadening caused by moving light scatterers (red blood cells). However, contrary to conventional approaches, we use multiple illumination wavelengths. This enables us to render the structural volumetric and blood flow images from the same dataset concurrently. Our method, denoted as multiwavelength laser Doppler holography (MLDH), links laser Doppler flowmetry with multiwavelength holographic detection to enable noninvasive visualization and possible blood flow quantification at different human retina layers at high speeds and high transverse resolution <em>in vivo</em>.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 1","pages":"Pages 264-275"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000111/pdfft?md5=fbd875c488dc4651bec90fa168ae6951&pid=1-s2.0-S0208521624000111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiwavelength laser doppler holography (MLDH) in spatiotemporal optical coherence tomography (STOC-T)\",\"authors\":\"Dawid Borycki ,&nbsp;Egidijus Auksorius ,&nbsp;Piotr Węgrzyn ,&nbsp;Kamil Liżewski ,&nbsp;Sławomir Tomczewski ,&nbsp;Ieva Žičkienė ,&nbsp;Karolis Adomavičius ,&nbsp;Karol Karnowski ,&nbsp;Maciej Wojtkowski\",\"doi\":\"10.1016/j.bbe.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatiotemporal optical coherence tomography (STOC-T) is the novel modality for high-speed, crosstalk- and aberration-free volumetric imaging of biological tissue <em>in vivo</em>. STOC-T extends the Fourier-Domain holographic Optical Coherence Tomography by the spatial phase modulation that enables the reduction of spatial coherence of the tunable laser. By reducing the spatial coherence of the laser, we suppress coherent noise, and, consequently, improve the imaging depth. Furthermore, we remove geometrical aberrations computationally in postprocessing. We recently demonstrated high-speed, high-resolution STOC-T of human retinal imaging <em>in vivo</em>. Here, we show that the dataset produced by STOC-T can be processed differently to reveal blood flow in the human retina <em>in vivo</em>. To render the blood flow, we first pre-process STOC-T holographic data to access the approximated information about the Doppler-shifted optical field backscattered from the sample. Then, we analyze it using methods from the laser Doppler flowmetry, namely, by analyzing the Doppler broadening caused by moving light scatterers (red blood cells). However, contrary to conventional approaches, we use multiple illumination wavelengths. This enables us to render the structural volumetric and blood flow images from the same dataset concurrently. Our method, denoted as multiwavelength laser Doppler holography (MLDH), links laser Doppler flowmetry with multiwavelength holographic detection to enable noninvasive visualization and possible blood flow quantification at different human retina layers at high speeds and high transverse resolution <em>in vivo</em>.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"Pages 264-275\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000111/pdfft?md5=fbd875c488dc4651bec90fa168ae6951&pid=1-s2.0-S0208521624000111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521624000111\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000111","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

时空光学相干断层成像(STOC-T)是一种对体内生物组织进行高速、无串扰和无像差容积成像的新型模式。STOC-T 通过空间相位调制,降低了可调谐激光的空间相干性,从而扩展了傅里叶域全息光学相干断层成像技术。通过降低激光的空间相干性,我们抑制了相干噪声,从而提高了成像深度。此外,我们还在后处理中通过计算消除几何像差。我们最近展示了高速、高分辨率的 STOC-T 人体视网膜活体成像。在这里,我们展示了 STOC-T 所产生的数据集可以通过不同的处理方式来揭示人体内视网膜的血流情况。为了呈现血流,我们首先对 STOC-T 全息数据进行预处理,以获取从样本反向散射的多普勒位移光场的近似信息。然后,我们使用激光多普勒血流测量仪的方法对其进行分析,即分析由移动光散射体(红细胞)引起的多普勒展宽。不过,与传统方法不同的是,我们使用了多种照明波长。这使我们能够同时渲染来自同一数据集的结构容积图像和血流图像。我们的方法被称为多波长激光多普勒全息成像技术(MLDH),它将激光多普勒血流测量与多波长全息探测技术相结合,实现了无创可视化,并可在体内以高速和高横向分辨率对人类视网膜不同层的血流进行量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiwavelength laser doppler holography (MLDH) in spatiotemporal optical coherence tomography (STOC-T)

Spatiotemporal optical coherence tomography (STOC-T) is the novel modality for high-speed, crosstalk- and aberration-free volumetric imaging of biological tissue in vivo. STOC-T extends the Fourier-Domain holographic Optical Coherence Tomography by the spatial phase modulation that enables the reduction of spatial coherence of the tunable laser. By reducing the spatial coherence of the laser, we suppress coherent noise, and, consequently, improve the imaging depth. Furthermore, we remove geometrical aberrations computationally in postprocessing. We recently demonstrated high-speed, high-resolution STOC-T of human retinal imaging in vivo. Here, we show that the dataset produced by STOC-T can be processed differently to reveal blood flow in the human retina in vivo. To render the blood flow, we first pre-process STOC-T holographic data to access the approximated information about the Doppler-shifted optical field backscattered from the sample. Then, we analyze it using methods from the laser Doppler flowmetry, namely, by analyzing the Doppler broadening caused by moving light scatterers (red blood cells). However, contrary to conventional approaches, we use multiple illumination wavelengths. This enables us to render the structural volumetric and blood flow images from the same dataset concurrently. Our method, denoted as multiwavelength laser Doppler holography (MLDH), links laser Doppler flowmetry with multiwavelength holographic detection to enable noninvasive visualization and possible blood flow quantification at different human retina layers at high speeds and high transverse resolution in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信