{"title":"太阳能电池设计的现场性能分析","authors":"Sungho Hwang , Dongchul Suh , Yoonmook Kang","doi":"10.1016/j.powera.2024.100145","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyzes the field performance of various solar cell designs. Most research and development efforts concerning solar cells aim to increase their efficiency or power under standard test conditions (STC). However, conducting an actual field performance analysis is crucial because of the various ambient conditions present in the field, including temperature, irradiance, PV system installation, and albedo. These conditions can result in different performance results compared to STC. This study compares and analyzes case studies to assess field performance. One particular case study compares the field performance of monofacial modules with a monofacial passivated emitter and rear cell (PERC) and bifacial PERC at a carport system in the ambient conditions of the Korean Peninsula during summer and winter. The module material properties (white EVA and white backsheet) can impact module performance owing to the transmittance spectra at longer wavelengths. Certain transmittance values also contribute to the bifaciality number. Although the monofacial cell demonstrates better STC results, the field performance of the bifacial cell is superior in terms of energy yield and cost-effectiveness. Therefore, this study highlights the importance of considering the field performance (energy yield), in addition to STC, when designing solar cells and modules.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000118/pdfft?md5=786090fbb89d83e7b34e3dfaee453a7f&pid=1-s2.0-S2666248524000118-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Field performance analysis of solar cell designs\",\"authors\":\"Sungho Hwang , Dongchul Suh , Yoonmook Kang\",\"doi\":\"10.1016/j.powera.2024.100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study analyzes the field performance of various solar cell designs. Most research and development efforts concerning solar cells aim to increase their efficiency or power under standard test conditions (STC). However, conducting an actual field performance analysis is crucial because of the various ambient conditions present in the field, including temperature, irradiance, PV system installation, and albedo. These conditions can result in different performance results compared to STC. This study compares and analyzes case studies to assess field performance. One particular case study compares the field performance of monofacial modules with a monofacial passivated emitter and rear cell (PERC) and bifacial PERC at a carport system in the ambient conditions of the Korean Peninsula during summer and winter. The module material properties (white EVA and white backsheet) can impact module performance owing to the transmittance spectra at longer wavelengths. Certain transmittance values also contribute to the bifaciality number. Although the monofacial cell demonstrates better STC results, the field performance of the bifacial cell is superior in terms of energy yield and cost-effectiveness. Therefore, this study highlights the importance of considering the field performance (energy yield), in addition to STC, when designing solar cells and modules.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000118/pdfft?md5=786090fbb89d83e7b34e3dfaee453a7f&pid=1-s2.0-S2666248524000118-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究分析了各种太阳能电池设计的现场性能。有关太阳能电池的大多数研发工作都旨在提高其在标准测试条件(STC)下的效率或功率。然而,进行实际现场性能分析至关重要,因为现场存在各种环境条件,包括温度、辐照度、光伏系统安装和反照率。与 STC 相比,这些条件会导致不同的性能结果。本研究通过比较和分析案例研究来评估现场性能。其中一个案例研究比较了单面组件与单面钝化发射器和后部电池 (PERC) 和双面 PERC 在朝鲜半岛夏季和冬季环境条件下的车棚系统的现场性能。模块材料特性(白色 EVA 和白色背板)会对模块性能产生影响,原因在于较长波长的透射光谱。某些透射率值也会影响双面性系数。虽然单面电池的 STC 结果更好,但就能量产出和成本效益而言,双面电池的现场性能更优。因此,本研究强调了在设计太阳能电池和模块时,除 STC 外,考虑现场性能(能量产出)的重要性。
This study analyzes the field performance of various solar cell designs. Most research and development efforts concerning solar cells aim to increase their efficiency or power under standard test conditions (STC). However, conducting an actual field performance analysis is crucial because of the various ambient conditions present in the field, including temperature, irradiance, PV system installation, and albedo. These conditions can result in different performance results compared to STC. This study compares and analyzes case studies to assess field performance. One particular case study compares the field performance of monofacial modules with a monofacial passivated emitter and rear cell (PERC) and bifacial PERC at a carport system in the ambient conditions of the Korean Peninsula during summer and winter. The module material properties (white EVA and white backsheet) can impact module performance owing to the transmittance spectra at longer wavelengths. Certain transmittance values also contribute to the bifaciality number. Although the monofacial cell demonstrates better STC results, the field performance of the bifacial cell is superior in terms of energy yield and cost-effectiveness. Therefore, this study highlights the importance of considering the field performance (energy yield), in addition to STC, when designing solar cells and modules.