挫折可通过基因复制和特化限制杂合酶的适应性

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Molecular Evolution Pub Date : 2024-04-01 Epub Date: 2024-03-12 DOI:10.1007/s00239-024-10161-4
Michael Schmutzer, Pouria Dasmeh, Andreas Wagner
{"title":"挫折可通过基因复制和特化限制杂合酶的适应性","authors":"Michael Schmutzer, Pouria Dasmeh, Andreas Wagner","doi":"10.1007/s00239-024-10161-4","DOIUrl":null,"url":null,"abstract":"<p><p>Virtually all enzymes catalyse more than one reaction, a phenomenon known as enzyme promiscuity. It is unclear whether promiscuous enzymes are more often generalists that catalyse multiple reactions at similar rates or specialists that catalyse one reaction much more efficiently than other reactions. In addition, the factors that shape whether an enzyme evolves to be a generalist or a specialist are poorly understood. To address these questions, we follow a three-pronged approach. First, we examine the distribution of promiscuity in empirical enzymes reported in the BRENDA database. We find that the promiscuity distribution of empirical enzymes is bimodal. In other words, a large fraction of promiscuous enzymes are either generalists or specialists, with few intermediates. Second, we demonstrate that enzyme biophysics is not sufficient to explain this bimodal distribution. Third, we devise a constraint-based model of promiscuous enzymes undergoing duplication and facing selection pressures favouring subfunctionalization. The model posits the existence of constraints between the catalytic efficiencies of an enzyme for different reactions and is inspired by empirical case studies. The promiscuity distribution predicted by our constraint-based model is consistent with the empirical bimodal distribution. Our results suggest that subfunctionalization is possible and beneficial only in certain enzymes. Furthermore, the model predicts that conflicting constraints and selection pressures can cause promiscuous enzymes to enter a 'frustrated' state, in which competing interactions limit the specialisation of enzymes. We find that frustration can be both a driver and an inhibitor of enzyme evolution by duplication and subfunctionalization. In addition, our model predicts that frustration becomes more likely as enzymes catalyse more reactions, implying that natural selection may prefer catalytically simple enzymes. In sum, our results suggest that frustration may play an important role in enzyme evolution.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978624/pdf/","citationCount":"0","resultStr":"{\"title\":\"Frustration can Limit the Adaptation of Promiscuous Enzymes Through Gene Duplication and Specialisation.\",\"authors\":\"Michael Schmutzer, Pouria Dasmeh, Andreas Wagner\",\"doi\":\"10.1007/s00239-024-10161-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Virtually all enzymes catalyse more than one reaction, a phenomenon known as enzyme promiscuity. It is unclear whether promiscuous enzymes are more often generalists that catalyse multiple reactions at similar rates or specialists that catalyse one reaction much more efficiently than other reactions. In addition, the factors that shape whether an enzyme evolves to be a generalist or a specialist are poorly understood. To address these questions, we follow a three-pronged approach. First, we examine the distribution of promiscuity in empirical enzymes reported in the BRENDA database. We find that the promiscuity distribution of empirical enzymes is bimodal. In other words, a large fraction of promiscuous enzymes are either generalists or specialists, with few intermediates. Second, we demonstrate that enzyme biophysics is not sufficient to explain this bimodal distribution. Third, we devise a constraint-based model of promiscuous enzymes undergoing duplication and facing selection pressures favouring subfunctionalization. The model posits the existence of constraints between the catalytic efficiencies of an enzyme for different reactions and is inspired by empirical case studies. The promiscuity distribution predicted by our constraint-based model is consistent with the empirical bimodal distribution. Our results suggest that subfunctionalization is possible and beneficial only in certain enzymes. Furthermore, the model predicts that conflicting constraints and selection pressures can cause promiscuous enzymes to enter a 'frustrated' state, in which competing interactions limit the specialisation of enzymes. We find that frustration can be both a driver and an inhibitor of enzyme evolution by duplication and subfunctionalization. In addition, our model predicts that frustration becomes more likely as enzymes catalyse more reactions, implying that natural selection may prefer catalytically simple enzymes. In sum, our results suggest that frustration may play an important role in enzyme evolution.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978624/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-024-10161-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10161-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

几乎所有酶都能催化一种以上的反应,这种现象被称为酶的杂交性。目前还不清楚的是,杂合酶通常是以类似速度催化多种反应的通才,还是催化一种反应比催化其他反应更有效的专才。此外,人们对影响酶进化为通性酶还是专性酶的因素也知之甚少。为了解决这些问题,我们采取了三管齐下的方法。首先,我们研究了BRENDA数据库中报告的经验酶的杂合性分布。我们发现,经验酶的杂交分布是双峰的。换句话说,很大一部分滥交酶要么是通才,要么是专才,中间体很少。其次,我们证明酶的生物物理学不足以解释这种双峰分布。第三,我们设计了一个基于约束的模型,说明杂合酶正在经历复制,并面临有利于亚功能化的选择压力。该模型假定酶对不同反应的催化效率之间存在约束,其灵感来自经验案例研究。我们基于约束的模型预测的杂交分布与经验中的双峰分布一致。我们的结果表明,亚功能化是可能的,而且只对某些酶有益。此外,该模型还预测,相互冲突的约束和选择压力会导致滥交的酶进入 "受挫 "状态,在这种状态下,相互竞争的相互作用限制了酶的专业化。我们发现,"受挫 "既是酶通过复制和亚功能化进化的驱动力,也是其抑制因素。此外,我们的模型预测,随着酶催化更多反应,挫折变得更有可能发生,这意味着自然选择可能更倾向于催化简单的酶。总之,我们的研究结果表明,挫折可能在酶的进化中扮演重要角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Frustration can Limit the Adaptation of Promiscuous Enzymes Through Gene Duplication and Specialisation.

Frustration can Limit the Adaptation of Promiscuous Enzymes Through Gene Duplication and Specialisation.

Virtually all enzymes catalyse more than one reaction, a phenomenon known as enzyme promiscuity. It is unclear whether promiscuous enzymes are more often generalists that catalyse multiple reactions at similar rates or specialists that catalyse one reaction much more efficiently than other reactions. In addition, the factors that shape whether an enzyme evolves to be a generalist or a specialist are poorly understood. To address these questions, we follow a three-pronged approach. First, we examine the distribution of promiscuity in empirical enzymes reported in the BRENDA database. We find that the promiscuity distribution of empirical enzymes is bimodal. In other words, a large fraction of promiscuous enzymes are either generalists or specialists, with few intermediates. Second, we demonstrate that enzyme biophysics is not sufficient to explain this bimodal distribution. Third, we devise a constraint-based model of promiscuous enzymes undergoing duplication and facing selection pressures favouring subfunctionalization. The model posits the existence of constraints between the catalytic efficiencies of an enzyme for different reactions and is inspired by empirical case studies. The promiscuity distribution predicted by our constraint-based model is consistent with the empirical bimodal distribution. Our results suggest that subfunctionalization is possible and beneficial only in certain enzymes. Furthermore, the model predicts that conflicting constraints and selection pressures can cause promiscuous enzymes to enter a 'frustrated' state, in which competing interactions limit the specialisation of enzymes. We find that frustration can be both a driver and an inhibitor of enzyme evolution by duplication and subfunctionalization. In addition, our model predicts that frustration becomes more likely as enzymes catalyse more reactions, implying that natural selection may prefer catalytically simple enzymes. In sum, our results suggest that frustration may play an important role in enzyme evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信