Túlio de Almeida Hermes, Paula Fratini, Beatriz Godinho Nascimento, Laís Leite Ferreira, Giuliana Petri, Fernando Luiz Affonso Fonseca, Alzira Alves de Siqueira Carvalho, David Feder
{"title":"Trilobatin 有助于改善杜氏肌营养不良症小鼠模型的肌病。","authors":"Túlio de Almeida Hermes, Paula Fratini, Beatriz Godinho Nascimento, Laís Leite Ferreira, Giuliana Petri, Fernando Luiz Affonso Fonseca, Alzira Alves de Siqueira Carvalho, David Feder","doi":"10.1111/iep.12502","DOIUrl":null,"url":null,"abstract":"<p>Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to a deficiency in dystrophin production and consequent progressive degeneration of skeletal muscle fibres, through oxidative stress and an exacerbated inflammatory process. The flavonoid trilobatin (TLB) demonstrates antioxidant and anti-inflammatory potential. Its high safety profile and effective action make it a potent therapy for the process of dystrophic muscle myonecrosis. Thus, we sought to investigate the action of TLB on damage in a DMD model, the mdx mouse. Eight-week-old male animals were treated with 160 mg/kg/day of trilobatin for 8 weeks. Control animals were treated with saline. Following treatment, muscle strength, serum creatine kinase (CK) levels, histopathology (necrotic myofibres, regenerated fibres/central nuclei, Feret's diameter and inflammatory area) and the levels of catalase and NF-κB (western blotting) of the quadriceps (QUA), diaphragm (DIA) and tibialis anterior (TA) muscles were measured. TLB was able to significantly increase muscle strength and reduce serum CK levels in dystrophic animals. The QUA of mdx mice showed a reduction in catalase and the number of fibres with a centralized nucleus after treatment with TLB. In the DIA of dystrophic animals, TLB reduced the necrotic myofibres, inflammatory area and NF-κB and increased the number of regenerated fibres and the total fibre diameter. In TA, TLB increased the number of regenerated fibres and reduced catalase levels in these animals. It is concluded that in the mdx experimental model, treatment with TLB was beneficial in the treatment of DMD.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"105 2","pages":"75-85"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trilobatin contributes to the improvement of myopathy in a mouse model of Duchenne muscular dystrophy\",\"authors\":\"Túlio de Almeida Hermes, Paula Fratini, Beatriz Godinho Nascimento, Laís Leite Ferreira, Giuliana Petri, Fernando Luiz Affonso Fonseca, Alzira Alves de Siqueira Carvalho, David Feder\",\"doi\":\"10.1111/iep.12502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to a deficiency in dystrophin production and consequent progressive degeneration of skeletal muscle fibres, through oxidative stress and an exacerbated inflammatory process. The flavonoid trilobatin (TLB) demonstrates antioxidant and anti-inflammatory potential. Its high safety profile and effective action make it a potent therapy for the process of dystrophic muscle myonecrosis. Thus, we sought to investigate the action of TLB on damage in a DMD model, the mdx mouse. Eight-week-old male animals were treated with 160 mg/kg/day of trilobatin for 8 weeks. Control animals were treated with saline. Following treatment, muscle strength, serum creatine kinase (CK) levels, histopathology (necrotic myofibres, regenerated fibres/central nuclei, Feret's diameter and inflammatory area) and the levels of catalase and NF-κB (western blotting) of the quadriceps (QUA), diaphragm (DIA) and tibialis anterior (TA) muscles were measured. TLB was able to significantly increase muscle strength and reduce serum CK levels in dystrophic animals. The QUA of mdx mice showed a reduction in catalase and the number of fibres with a centralized nucleus after treatment with TLB. In the DIA of dystrophic animals, TLB reduced the necrotic myofibres, inflammatory area and NF-κB and increased the number of regenerated fibres and the total fibre diameter. In TA, TLB increased the number of regenerated fibres and reduced catalase levels in these animals. It is concluded that in the mdx experimental model, treatment with TLB was beneficial in the treatment of DMD.</p>\",\"PeriodicalId\":14157,\"journal\":{\"name\":\"International Journal of Experimental Pathology\",\"volume\":\"105 2\",\"pages\":\"75-85\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Experimental Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iep.12502\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Experimental Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iep.12502","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
Trilobatin contributes to the improvement of myopathy in a mouse model of Duchenne muscular dystrophy
Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to a deficiency in dystrophin production and consequent progressive degeneration of skeletal muscle fibres, through oxidative stress and an exacerbated inflammatory process. The flavonoid trilobatin (TLB) demonstrates antioxidant and anti-inflammatory potential. Its high safety profile and effective action make it a potent therapy for the process of dystrophic muscle myonecrosis. Thus, we sought to investigate the action of TLB on damage in a DMD model, the mdx mouse. Eight-week-old male animals were treated with 160 mg/kg/day of trilobatin for 8 weeks. Control animals were treated with saline. Following treatment, muscle strength, serum creatine kinase (CK) levels, histopathology (necrotic myofibres, regenerated fibres/central nuclei, Feret's diameter and inflammatory area) and the levels of catalase and NF-κB (western blotting) of the quadriceps (QUA), diaphragm (DIA) and tibialis anterior (TA) muscles were measured. TLB was able to significantly increase muscle strength and reduce serum CK levels in dystrophic animals. The QUA of mdx mice showed a reduction in catalase and the number of fibres with a centralized nucleus after treatment with TLB. In the DIA of dystrophic animals, TLB reduced the necrotic myofibres, inflammatory area and NF-κB and increased the number of regenerated fibres and the total fibre diameter. In TA, TLB increased the number of regenerated fibres and reduced catalase levels in these animals. It is concluded that in the mdx experimental model, treatment with TLB was beneficial in the treatment of DMD.
期刊介绍:
Experimental Pathology encompasses the use of multidisciplinary scientific techniques to investigate the pathogenesis and progression of pathologic processes. The International Journal of Experimental Pathology - IJEP - publishes papers which afford new and imaginative insights into the basic mechanisms underlying human disease, including in vitro work, animal models, and clinical research.
Aiming to report on work that addresses the common theme of mechanism at a cellular and molecular level, IJEP publishes both original experimental investigations and review articles. Recent themes for review series have covered topics as diverse as "Viruses and Cancer", "Granulomatous Diseases", "Stem cells" and "Cardiovascular Pathology".