Yan Li, Wenlong Fu, JinYing Xiang, Yinying Ren, Yuehan Li, Mi Zhou, Jinyue Yu, Zhengxiu Luo, Enmei Liu, Zhou Fu, Bo Liu, Fengxia Ding
{"title":"长链酰基-CoA 合成酶 4 介导的线粒体脂肪酸代谢和树突状细胞抗原递呈","authors":"Yan Li, Wenlong Fu, JinYing Xiang, Yinying Ren, Yuehan Li, Mi Zhou, Jinyue Yu, Zhengxiu Luo, Enmei Liu, Zhou Fu, Bo Liu, Fengxia Ding","doi":"10.1007/s00011-024-01868-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate the role of Acyl-CoA synthetase 4 (ACSL4) in mediating mitochondrial fatty acid metabolism and dendritic cell (DC) antigen presentation in the immune response associated with asthma.</p><p><strong>Methods: </strong>RNA sequencing was employed to identify key genes associated with mitochondrial function and fatty acid metabolism in DCs. ELISA was employed to assess the levels of fatty acid metabolism in DCs. Mitochondrial morphology was evaluated using laser confocal microscopy, structured illumination microscopy, and transmission electron microscopy. Flow cytometry and immunofluorescence were utilized to detect changes in mitochondrial superoxide generation in DCs, followed by immunofluorescence co-localization analysis of ACSL4 and the mitochondrial marker protein COXIV. Subsequently, pathological changes and immune responses in mouse lung tissue were observed. ELISA was conducted to measure the levels of fatty acid metabolism in lung tissue DCs. qRT-PCR and western blotting were employed to respectively assess the expression levels of mitochondrial-associated genes (ATP5F1A, VDAC1, COXIV, TFAM, iNOS) and proteins (ATP5F1A, VDAC1, COXIV, TOMM20, iNOS) in lung tissue DCs. Flow cytometry was utilized to analyze changes in the expression of surface antigens presented by DCs in lung tissue, specifically the MHCII molecule and the co-stimulatory molecules CD80/86.</p><p><strong>Results: </strong>The sequencing results reveal that ACSL4 is a crucial gene regulating mitochondrial function and fatty acid metabolism in DCs. Inhibiting ACSL4 reduces the levels of fatty acid oxidases in DCs, increases arachidonic acid levels, and decreases A-CoA synthesis. Simultaneously, ACSL4 inhibition leads to an increase in mitochondrial superoxide production (MitoSOX) in DCs, causing mitochondrial rupture, vacuolization, and sparse mitochondrial cristae. In mice, ACSL4 inhibition exacerbates pulmonary pathological changes and immune responses, reducing the fatty acid metabolism levels within lung tissue DCs and the expression of mitochondria-associated genes and proteins. This inhibition induces an increase in the expression of MHCII antigen presentation molecules and co-stimulatory molecules CD80/86 in DCs.</p><p><strong>Conclusions: </strong>The research findings indicate that ACSL4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation play a crucial regulatory role in the immune response of asthma. This discovery holds promise for enhancing our understanding of the mechanisms underlying asthma pathogenesis and potentially identifying novel targets for its prevention and treatment.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"819-839"},"PeriodicalIF":4.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-chain acyl-CoA synthetase 4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation.\",\"authors\":\"Yan Li, Wenlong Fu, JinYing Xiang, Yinying Ren, Yuehan Li, Mi Zhou, Jinyue Yu, Zhengxiu Luo, Enmei Liu, Zhou Fu, Bo Liu, Fengxia Ding\",\"doi\":\"10.1007/s00011-024-01868-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to investigate the role of Acyl-CoA synthetase 4 (ACSL4) in mediating mitochondrial fatty acid metabolism and dendritic cell (DC) antigen presentation in the immune response associated with asthma.</p><p><strong>Methods: </strong>RNA sequencing was employed to identify key genes associated with mitochondrial function and fatty acid metabolism in DCs. ELISA was employed to assess the levels of fatty acid metabolism in DCs. Mitochondrial morphology was evaluated using laser confocal microscopy, structured illumination microscopy, and transmission electron microscopy. Flow cytometry and immunofluorescence were utilized to detect changes in mitochondrial superoxide generation in DCs, followed by immunofluorescence co-localization analysis of ACSL4 and the mitochondrial marker protein COXIV. Subsequently, pathological changes and immune responses in mouse lung tissue were observed. ELISA was conducted to measure the levels of fatty acid metabolism in lung tissue DCs. qRT-PCR and western blotting were employed to respectively assess the expression levels of mitochondrial-associated genes (ATP5F1A, VDAC1, COXIV, TFAM, iNOS) and proteins (ATP5F1A, VDAC1, COXIV, TOMM20, iNOS) in lung tissue DCs. Flow cytometry was utilized to analyze changes in the expression of surface antigens presented by DCs in lung tissue, specifically the MHCII molecule and the co-stimulatory molecules CD80/86.</p><p><strong>Results: </strong>The sequencing results reveal that ACSL4 is a crucial gene regulating mitochondrial function and fatty acid metabolism in DCs. Inhibiting ACSL4 reduces the levels of fatty acid oxidases in DCs, increases arachidonic acid levels, and decreases A-CoA synthesis. Simultaneously, ACSL4 inhibition leads to an increase in mitochondrial superoxide production (MitoSOX) in DCs, causing mitochondrial rupture, vacuolization, and sparse mitochondrial cristae. In mice, ACSL4 inhibition exacerbates pulmonary pathological changes and immune responses, reducing the fatty acid metabolism levels within lung tissue DCs and the expression of mitochondria-associated genes and proteins. This inhibition induces an increase in the expression of MHCII antigen presentation molecules and co-stimulatory molecules CD80/86 in DCs.</p><p><strong>Conclusions: </strong>The research findings indicate that ACSL4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation play a crucial regulatory role in the immune response of asthma. This discovery holds promise for enhancing our understanding of the mechanisms underlying asthma pathogenesis and potentially identifying novel targets for its prevention and treatment.</p>\",\"PeriodicalId\":13550,\"journal\":{\"name\":\"Inflammation Research\",\"volume\":\" \",\"pages\":\"819-839\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00011-024-01868-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-024-01868-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
研究目的本研究旨在探讨 Acyl-CoA synthetase 4(ACSL4)在哮喘相关免疫反应中介导线粒体脂肪酸代谢和树突状细胞(DC)抗原呈递的作用:方法:采用 RNA 测序鉴定与线粒体功能和 DC 脂肪酸代谢相关的关键基因。采用 ELISA 方法评估 DCs 中的脂肪酸代谢水平。使用激光共聚焦显微镜、结构照明显微镜和透射电子显微镜评估线粒体形态。利用流式细胞术和免疫荧光检测 DC 线粒体超氧化物生成的变化,然后对 ACSL4 和线粒体标记蛋白 COXIV 进行免疫荧光共定位分析。随后观察了小鼠肺组织的病理变化和免疫反应。采用 qRT-PCR 和 Western 印迹技术分别评估肺组织 DC 中线粒体相关基因(ATP5F1A、VDAC1、COXIV、TFAM、iNOS)和蛋白(ATP5F1A、VDAC1、COXIV、TOMM20、iNOS)的表达水平。利用流式细胞术分析了肺组织中直流细胞表面抗原的表达变化,特别是 MHCII 分子和共刺激分子 CD80/86:测序结果显示,ACSL4是调节DCs线粒体功能和脂肪酸代谢的关键基因。抑制 ACSL4 会降低 DCs 中脂肪酸氧化酶的水平,增加花生四烯酸的含量,减少 A-CoA 的合成。同时,抑制 ACSL4 会导致 DC 中线粒体超氧化物生成(MitoSOX)增加,造成线粒体破裂、空泡化和线粒体嵴稀疏。在小鼠体内,抑制 ACSL4 会加剧肺部病理变化和免疫反应,降低肺组织 DC 内的脂肪酸代谢水平以及线粒体相关基因和蛋白质的表达。这种抑制可诱导直流细胞中MHCII抗原递呈分子和共刺激分子CD80/86的表达增加:研究结果表明,ACSL4 介导的线粒体脂肪酸代谢和树突状细胞抗原呈递在哮喘的免疫反应中发挥着重要的调节作用。这一发现有望加深我们对哮喘发病机制的了解,并有可能确定预防和治疗哮喘的新靶点。
Objective: This study aims to investigate the role of Acyl-CoA synthetase 4 (ACSL4) in mediating mitochondrial fatty acid metabolism and dendritic cell (DC) antigen presentation in the immune response associated with asthma.
Methods: RNA sequencing was employed to identify key genes associated with mitochondrial function and fatty acid metabolism in DCs. ELISA was employed to assess the levels of fatty acid metabolism in DCs. Mitochondrial morphology was evaluated using laser confocal microscopy, structured illumination microscopy, and transmission electron microscopy. Flow cytometry and immunofluorescence were utilized to detect changes in mitochondrial superoxide generation in DCs, followed by immunofluorescence co-localization analysis of ACSL4 and the mitochondrial marker protein COXIV. Subsequently, pathological changes and immune responses in mouse lung tissue were observed. ELISA was conducted to measure the levels of fatty acid metabolism in lung tissue DCs. qRT-PCR and western blotting were employed to respectively assess the expression levels of mitochondrial-associated genes (ATP5F1A, VDAC1, COXIV, TFAM, iNOS) and proteins (ATP5F1A, VDAC1, COXIV, TOMM20, iNOS) in lung tissue DCs. Flow cytometry was utilized to analyze changes in the expression of surface antigens presented by DCs in lung tissue, specifically the MHCII molecule and the co-stimulatory molecules CD80/86.
Results: The sequencing results reveal that ACSL4 is a crucial gene regulating mitochondrial function and fatty acid metabolism in DCs. Inhibiting ACSL4 reduces the levels of fatty acid oxidases in DCs, increases arachidonic acid levels, and decreases A-CoA synthesis. Simultaneously, ACSL4 inhibition leads to an increase in mitochondrial superoxide production (MitoSOX) in DCs, causing mitochondrial rupture, vacuolization, and sparse mitochondrial cristae. In mice, ACSL4 inhibition exacerbates pulmonary pathological changes and immune responses, reducing the fatty acid metabolism levels within lung tissue DCs and the expression of mitochondria-associated genes and proteins. This inhibition induces an increase in the expression of MHCII antigen presentation molecules and co-stimulatory molecules CD80/86 in DCs.
Conclusions: The research findings indicate that ACSL4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation play a crucial regulatory role in the immune response of asthma. This discovery holds promise for enhancing our understanding of the mechanisms underlying asthma pathogenesis and potentially identifying novel targets for its prevention and treatment.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.