非多项式 q-Askey 方案:积分表示、特征函数特性和多项式极限

IF 2.3 2区 数学 Q1 MATHEMATICS
{"title":"非多项式 q-Askey 方案:积分表示、特征函数特性和多项式极限","authors":"","doi":"10.1007/s00365-024-09682-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We construct a non-polynomial generalization of the <em>q</em>-Askey scheme. Whereas the elements of the <em>q</em>-Askey scheme are given by <em>q</em>-hypergeometric series, the elements of the non-polynomial scheme are given by contour integrals, whose integrands are built from Ruijsenaars’ hyperbolic gamma function. Alternatively, the integrands can be expressed in terms of Faddeev’s quantum dilogarithm, Woronowicz’s quantum exponential, or Kurokawa’s double sine function. We present the basic properties of all the elements of the scheme, including their integral representations, joint eigenfunction properties, and polynomial limits.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":"38 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-polynomial q-Askey Scheme: Integral Representations, Eigenfunction Properties, and Polynomial Limits\",\"authors\":\"\",\"doi\":\"10.1007/s00365-024-09682-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We construct a non-polynomial generalization of the <em>q</em>-Askey scheme. Whereas the elements of the <em>q</em>-Askey scheme are given by <em>q</em>-hypergeometric series, the elements of the non-polynomial scheme are given by contour integrals, whose integrands are built from Ruijsenaars’ hyperbolic gamma function. Alternatively, the integrands can be expressed in terms of Faddeev’s quantum dilogarithm, Woronowicz’s quantum exponential, or Kurokawa’s double sine function. We present the basic properties of all the elements of the scheme, including their integral representations, joint eigenfunction properties, and polynomial limits.</p>\",\"PeriodicalId\":50621,\"journal\":{\"name\":\"Constructive Approximation\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Approximation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-024-09682-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Approximation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09682-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们构建了 q-Askey 方案的非多项式广义。q-Askey方案的元素是由q-超几何级数给出的,而非多项式方案的元素是由等值线积分给出的,其积分是由Ruijsenaars的双曲伽马函数建立的。另外,积分也可以用 Faddeev 的量子稀对数、Woronowicz 的量子指数或 Kurokawa 的双正弦函数来表示。我们介绍了该方案所有元素的基本特性,包括它们的积分表示、联合特征函数特性和多项式极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-polynomial q-Askey Scheme: Integral Representations, Eigenfunction Properties, and Polynomial Limits

Abstract

We construct a non-polynomial generalization of the q-Askey scheme. Whereas the elements of the q-Askey scheme are given by q-hypergeometric series, the elements of the non-polynomial scheme are given by contour integrals, whose integrands are built from Ruijsenaars’ hyperbolic gamma function. Alternatively, the integrands can be expressed in terms of Faddeev’s quantum dilogarithm, Woronowicz’s quantum exponential, or Kurokawa’s double sine function. We present the basic properties of all the elements of the scheme, including their integral representations, joint eigenfunction properties, and polynomial limits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
3.70%
发文量
35
审稿时长
1 months
期刊介绍: Constructive Approximation is an international mathematics journal dedicated to Approximations and Expansions and related research in computation, function theory, functional analysis, interpolation spaces and interpolation of operators, numerical analysis, space of functions, special functions, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信