{"title":"天然催化剂在超声条件下与松香接枝的超支化聚缩水甘油:合成、表征和抗菌活性","authors":"Amina Mostefai, Mahmoud Belalia, Amine Harrane, Djahira Hamed, Mohammed Amin Bezzekhami, Louiza Belkacemi","doi":"10.1177/08839115241237258","DOIUrl":null,"url":null,"abstract":"This study aimed to apply a novel green polymerization process to produce a new copolymer with potential antimicrobial activity for industrial application. The glycidol was polymerized into hyperbranched polyglycidol (HPG) polymer which in turn has been esterified with rosin to produce hyperbranched copoly(glycidol-Rosin) (HPGR), a new co-polymer. The process used Maghnite-H+, a montmorillonite silicate sheet clay, as an eco-catalyst and ultrasound was applied to enhance the interaction during polymerization. Different catalyst amounts were tested to assess their effects on the polymerization process. Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) were used to analyze the polymer products. The antimicrobial activity of HPGR was assessed against six human standard microbial strains using the agar disc diffusion method. The catalyst percentage of 10% resulted in the best yield for HPGR (35%). Thermogravimetric Analysis (TGA) revealed a best thermal stability of HPGR compared to that of HPG. The HPGR co-polymer displayed the best antibacterial activity against Klebsiella pneumonia, Bacillus cereus, Staphylococcus aureus, and Escherichia coli, producing inhibition zones of 12.33 ± 0.57, 11.00 ± 1.00, 10.66 ± 1.15, and 10.33 ± 1.15 mm, respectively. The hyperbranched copoly(glycidol-Rosin), an eco-catalyst-synthesized co-polymer, displayed interesting physical and antimicrobial properties for industrial application.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"87 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbranched polyglycidol grafted with rosin by a natural catalyst under ultrasound: Synthesis, characterization and antimicrobial activity\",\"authors\":\"Amina Mostefai, Mahmoud Belalia, Amine Harrane, Djahira Hamed, Mohammed Amin Bezzekhami, Louiza Belkacemi\",\"doi\":\"10.1177/08839115241237258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to apply a novel green polymerization process to produce a new copolymer with potential antimicrobial activity for industrial application. The glycidol was polymerized into hyperbranched polyglycidol (HPG) polymer which in turn has been esterified with rosin to produce hyperbranched copoly(glycidol-Rosin) (HPGR), a new co-polymer. The process used Maghnite-H+, a montmorillonite silicate sheet clay, as an eco-catalyst and ultrasound was applied to enhance the interaction during polymerization. Different catalyst amounts were tested to assess their effects on the polymerization process. Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) were used to analyze the polymer products. The antimicrobial activity of HPGR was assessed against six human standard microbial strains using the agar disc diffusion method. The catalyst percentage of 10% resulted in the best yield for HPGR (35%). Thermogravimetric Analysis (TGA) revealed a best thermal stability of HPGR compared to that of HPG. The HPGR co-polymer displayed the best antibacterial activity against Klebsiella pneumonia, Bacillus cereus, Staphylococcus aureus, and Escherichia coli, producing inhibition zones of 12.33 ± 0.57, 11.00 ± 1.00, 10.66 ± 1.15, and 10.33 ± 1.15 mm, respectively. The hyperbranched copoly(glycidol-Rosin), an eco-catalyst-synthesized co-polymer, displayed interesting physical and antimicrobial properties for industrial application.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115241237258\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115241237258","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Hyperbranched polyglycidol grafted with rosin by a natural catalyst under ultrasound: Synthesis, characterization and antimicrobial activity
This study aimed to apply a novel green polymerization process to produce a new copolymer with potential antimicrobial activity for industrial application. The glycidol was polymerized into hyperbranched polyglycidol (HPG) polymer which in turn has been esterified with rosin to produce hyperbranched copoly(glycidol-Rosin) (HPGR), a new co-polymer. The process used Maghnite-H+, a montmorillonite silicate sheet clay, as an eco-catalyst and ultrasound was applied to enhance the interaction during polymerization. Different catalyst amounts were tested to assess their effects on the polymerization process. Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) were used to analyze the polymer products. The antimicrobial activity of HPGR was assessed against six human standard microbial strains using the agar disc diffusion method. The catalyst percentage of 10% resulted in the best yield for HPGR (35%). Thermogravimetric Analysis (TGA) revealed a best thermal stability of HPGR compared to that of HPG. The HPGR co-polymer displayed the best antibacterial activity against Klebsiella pneumonia, Bacillus cereus, Staphylococcus aureus, and Escherichia coli, producing inhibition zones of 12.33 ± 0.57, 11.00 ± 1.00, 10.66 ± 1.15, and 10.33 ± 1.15 mm, respectively. The hyperbranched copoly(glycidol-Rosin), an eco-catalyst-synthesized co-polymer, displayed interesting physical and antimicrobial properties for industrial application.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).