基里洛夫结构和哈密尔顿系统的缩放与标准对称性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Bravetti, S. Grillo, J. C. Marrero, E. Padrón
{"title":"基里洛夫结构和哈密尔顿系统的缩放与标准对称性","authors":"A. Bravetti,&nbsp;S. Grillo,&nbsp;J. C. Marrero,&nbsp;E. Padrón","doi":"10.1111/sapm.12681","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We also discuss a reconstruction process for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12681","citationCount":"0","resultStr":"{\"title\":\"Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries\",\"authors\":\"A. Bravetti,&nbsp;S. Grillo,&nbsp;J. C. Marrero,&nbsp;E. Padrón\",\"doi\":\"10.1111/sapm.12681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>, which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. We also discuss a reconstruction process for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12681\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了交点哈密顿系统的缩减,即缩减与标准对称性的换算。我们证明,这种还原过程会产生所谓的基里洛夫哈密顿系统。此外,我们还证明,如果先按比例对称性还原,再按标准对称性还原,或按相反的顺序还原,我们会得到等价的基里洛夫哈密顿系统。在交点哈密顿系统的构型空间是一个与对称群重合的李群的特殊情况下,还原结构是李-泊松结构在.的李代数对偶空间上的一个有趣的基里洛夫版本。 我们还讨论了交点哈密顿系统的重构过程,它允许一个缩放对称性。我们将用一些有趣的例子来详细说明前面的所有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries

Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries

In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group G $G$ , which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie–Poisson structure on the dual space of the Lie algebra of G $G$ . We also discuss a reconstruction process for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信