{"title":"准危险性标准","authors":"Yuichiro Goto","doi":"10.1007/s10468-024-10263-z","DOIUrl":null,"url":null,"abstract":"<div><p>Dlab and Ringel showed that algebras being quasi-hereditary in all orders for indices of primitive idempotents becomes hereditary. So, we are interested in for which orders a given quasi-hereditary algebra is again quasi-hereditary. As a matter of fact, we consider permutations of indices, and if the algebra with permuted indices is quasi-hereditary, then we say that this permutation gives quasi-heredity. In this article, we give a criterion for adjacent transpositions giving quasi-heredity, in terms of homological conditions of standard or costandard modules over a given quasi-hereditary algebra.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 2","pages":"1395 - 1403"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criterion for Quasi-Heredity\",\"authors\":\"Yuichiro Goto\",\"doi\":\"10.1007/s10468-024-10263-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dlab and Ringel showed that algebras being quasi-hereditary in all orders for indices of primitive idempotents becomes hereditary. So, we are interested in for which orders a given quasi-hereditary algebra is again quasi-hereditary. As a matter of fact, we consider permutations of indices, and if the algebra with permuted indices is quasi-hereditary, then we say that this permutation gives quasi-heredity. In this article, we give a criterion for adjacent transpositions giving quasi-heredity, in terms of homological conditions of standard or costandard modules over a given quasi-hereditary algebra.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 2\",\"pages\":\"1395 - 1403\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10263-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10263-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dlab and Ringel showed that algebras being quasi-hereditary in all orders for indices of primitive idempotents becomes hereditary. So, we are interested in for which orders a given quasi-hereditary algebra is again quasi-hereditary. As a matter of fact, we consider permutations of indices, and if the algebra with permuted indices is quasi-hereditary, then we say that this permutation gives quasi-heredity. In this article, we give a criterion for adjacent transpositions giving quasi-heredity, in terms of homological conditions of standard or costandard modules over a given quasi-hereditary algebra.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.