模拟光子网络上的光合作用能量传输

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Hao Tang, Xiao-Wen Shang, Zi-Yu Shi, Tian-Shen He, Zhen Feng, Tian-Yu Wang, Ruoxi Shi, Hui-Ming Wang, Xi Tan, Xiao-Yun Xu, Yao Wang, Jun Gao, M. S. Kim, Xian-Min Jin
{"title":"模拟光子网络上的光合作用能量传输","authors":"Hao Tang, Xiao-Wen Shang, Zi-Yu Shi, Tian-Shen He, Zhen Feng, Tian-Yu Wang, Ruoxi Shi, Hui-Ming Wang, Xi Tan, Xiao-Yun Xu, Yao Wang, Jun Gao, M. S. Kim, Xian-Min Jin","doi":"10.1038/s41534-024-00824-x","DOIUrl":null,"url":null,"abstract":"<p>Quantum effects in photosynthetic energy transport in nature, especially for the typical Fenna-Matthews-Olson (FMO) complexes, are extensively studied in quantum biology. Such energy transport processes can be investigated as open quantum systems that blend the quantum coherence and environmental noise, and have been experimentally simulated on a few quantum devices. However, the existing experiments always lack a solid quantum simulation for the FMO energy transport due to their constraints to map a variety of issues in actual FMO complexes that have rich biological meanings. Here we successfully map the full coupling profile of the seven-site FMO structure by comprehensive characterisation and precise control of the evanescent coupling of the three-dimensional waveguide array. By applying a stochastic dynamical modulation on each waveguide, we introduce the base site energy and the dephasing term in coloured noise to faithfully simulate the power spectral density of the FMO complexes. We show our photonic model well interprets the phenomena including reorganisation energy, vibrational assistance, exciton transfer and energy localisation. We further experimentally demonstrate the existence of an optimal transport efficiency at certain dephasing strength, providing a window to closely investigate environment-assisted quantum transport.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"18 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating photosynthetic energy transport on a photonic network\",\"authors\":\"Hao Tang, Xiao-Wen Shang, Zi-Yu Shi, Tian-Shen He, Zhen Feng, Tian-Yu Wang, Ruoxi Shi, Hui-Ming Wang, Xi Tan, Xiao-Yun Xu, Yao Wang, Jun Gao, M. S. Kim, Xian-Min Jin\",\"doi\":\"10.1038/s41534-024-00824-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum effects in photosynthetic energy transport in nature, especially for the typical Fenna-Matthews-Olson (FMO) complexes, are extensively studied in quantum biology. Such energy transport processes can be investigated as open quantum systems that blend the quantum coherence and environmental noise, and have been experimentally simulated on a few quantum devices. However, the existing experiments always lack a solid quantum simulation for the FMO energy transport due to their constraints to map a variety of issues in actual FMO complexes that have rich biological meanings. Here we successfully map the full coupling profile of the seven-site FMO structure by comprehensive characterisation and precise control of the evanescent coupling of the three-dimensional waveguide array. By applying a stochastic dynamical modulation on each waveguide, we introduce the base site energy and the dephasing term in coloured noise to faithfully simulate the power spectral density of the FMO complexes. We show our photonic model well interprets the phenomena including reorganisation energy, vibrational assistance, exciton transfer and energy localisation. We further experimentally demonstrate the existence of an optimal transport efficiency at certain dephasing strength, providing a window to closely investigate environment-assisted quantum transport.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00824-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00824-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

量子生物学对自然界中光合作用能量传输的量子效应,特别是典型的芬纳-马修斯-奥尔森(FMO)复合物进行了广泛研究。这种能量传输过程可作为融合了量子相干性和环境噪声的开放量子系统进行研究,并已在一些量子设备上进行了实验模拟。然而,现有的实验始终缺乏对 FMO 能量传输的扎实量子模拟,原因是它们无法映射具有丰富生物学意义的实际 FMO 复合物中的各种问题。在这里,我们通过全面描述和精确控制三维波导阵列的蒸发耦合,成功绘制了七位 FMO 结构的完整耦合曲线。通过在每个波导上应用随机动态调制,我们在彩色噪声中引入了基点能量和去相项,从而忠实地模拟了 FMO 复合物的功率谱密度。我们的研究表明,我们的光子模型能很好地解释重组能量、振动辅助、激子转移和能量定位等现象。我们进一步通过实验证明,在一定的去相强度下存在最佳传输效率,这为密切研究环境辅助量子传输提供了一个窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulating photosynthetic energy transport on a photonic network

Simulating photosynthetic energy transport on a photonic network

Quantum effects in photosynthetic energy transport in nature, especially for the typical Fenna-Matthews-Olson (FMO) complexes, are extensively studied in quantum biology. Such energy transport processes can be investigated as open quantum systems that blend the quantum coherence and environmental noise, and have been experimentally simulated on a few quantum devices. However, the existing experiments always lack a solid quantum simulation for the FMO energy transport due to their constraints to map a variety of issues in actual FMO complexes that have rich biological meanings. Here we successfully map the full coupling profile of the seven-site FMO structure by comprehensive characterisation and precise control of the evanescent coupling of the three-dimensional waveguide array. By applying a stochastic dynamical modulation on each waveguide, we introduce the base site energy and the dephasing term in coloured noise to faithfully simulate the power spectral density of the FMO complexes. We show our photonic model well interprets the phenomena including reorganisation energy, vibrational assistance, exciton transfer and energy localisation. We further experimentally demonstrate the existence of an optimal transport efficiency at certain dephasing strength, providing a window to closely investigate environment-assisted quantum transport.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信