气相传输沉积 Sb2S3 薄膜太阳能电池:通过沉积温度调整光伏特性

IF 5.4 Q2 CHEMISTRY, PHYSICAL
Indu Sharma, Pravin S. Pawar, Rahul K. Yadav, Yong Tae Kim, Neha Bisht, Parag R. Patil, Jaeyeong Heo
{"title":"气相传输沉积 Sb2S3 薄膜太阳能电池:通过沉积温度调整光伏特性","authors":"Indu Sharma,&nbsp;Pravin S. Pawar,&nbsp;Rahul K. Yadav,&nbsp;Yong Tae Kim,&nbsp;Neha Bisht,&nbsp;Parag R. Patil,&nbsp;Jaeyeong Heo","doi":"10.1016/j.powera.2024.100143","DOIUrl":null,"url":null,"abstract":"<div><p>Crystal orientation plays a crucial role in the performance of Sb<sub>2</sub>S<sub>3</sub> thin-film solar cells (TFSCs). Among various deposition techniques, vapor transport deposition (VTD) stands out as a viable technique for producing scalable and uniformly deposited thin films, particularly in the solar industry. This study explores temperature-modulated VTD-Sb<sub>2</sub>S<sub>3</sub> deposition to enable efficient carrier transport in photovoltaic cells. In the VTD process, the deposition temperature is altered between 480 °C and 540 °C. XRD, SEM, EDS, and AFM techniques are employed to obtain the characteristics of the Sb<sub>2</sub>S<sub>3</sub> thin films at varying temperatures and evaluate critical features like crystal structure and orientation, surface morphology, composition, and roughness. The prominent crystal orientation changes from the (hk0) to the (hk1) plane after increasing the deposition temperature from 500 to 520 °C. The (211)- and (221)-planes become more prominent when the deposition temperature exceeds 520 °C. The device with the architecture SLG/Mo/Sb<sub>2</sub>S<sub>3</sub>/CdS/i-ZnO/AZO/Al, a substrate-configured TFSC, yields a maximum power conversion efficiency of 0.22% when the VTD-Sb<sub>2</sub>S<sub>3</sub> absorber film is deposited at 520 °C. This study presents a promising approach to producing thin films with a preference for specific crystal orientations. The primary aim is to enhance the efficiency of solar cells that utilize VTD-Sb<sub>2</sub>S<sub>3</sub> absorbers.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266624852400009X/pdfft?md5=e911d88fb29d749a4a2d6c0d9abdd3d9&pid=1-s2.0-S266624852400009X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Vapor-transport-deposited Sb2S3 thin-film solar cells: Tailoring photovoltaic properties through deposition temperature\",\"authors\":\"Indu Sharma,&nbsp;Pravin S. Pawar,&nbsp;Rahul K. Yadav,&nbsp;Yong Tae Kim,&nbsp;Neha Bisht,&nbsp;Parag R. Patil,&nbsp;Jaeyeong Heo\",\"doi\":\"10.1016/j.powera.2024.100143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crystal orientation plays a crucial role in the performance of Sb<sub>2</sub>S<sub>3</sub> thin-film solar cells (TFSCs). Among various deposition techniques, vapor transport deposition (VTD) stands out as a viable technique for producing scalable and uniformly deposited thin films, particularly in the solar industry. This study explores temperature-modulated VTD-Sb<sub>2</sub>S<sub>3</sub> deposition to enable efficient carrier transport in photovoltaic cells. In the VTD process, the deposition temperature is altered between 480 °C and 540 °C. XRD, SEM, EDS, and AFM techniques are employed to obtain the characteristics of the Sb<sub>2</sub>S<sub>3</sub> thin films at varying temperatures and evaluate critical features like crystal structure and orientation, surface morphology, composition, and roughness. The prominent crystal orientation changes from the (hk0) to the (hk1) plane after increasing the deposition temperature from 500 to 520 °C. The (211)- and (221)-planes become more prominent when the deposition temperature exceeds 520 °C. The device with the architecture SLG/Mo/Sb<sub>2</sub>S<sub>3</sub>/CdS/i-ZnO/AZO/Al, a substrate-configured TFSC, yields a maximum power conversion efficiency of 0.22% when the VTD-Sb<sub>2</sub>S<sub>3</sub> absorber film is deposited at 520 °C. This study presents a promising approach to producing thin films with a preference for specific crystal orientations. The primary aim is to enhance the efficiency of solar cells that utilize VTD-Sb<sub>2</sub>S<sub>3</sub> absorbers.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266624852400009X/pdfft?md5=e911d88fb29d749a4a2d6c0d9abdd3d9&pid=1-s2.0-S266624852400009X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266624852400009X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266624852400009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

晶体取向对 Sb2S3 薄膜太阳能电池(TFSC)的性能起着至关重要的作用。在各种沉积技术中,气相传输沉积(VTD)是生产可扩展和均匀沉积薄膜的可行技术,尤其是在太阳能行业。本研究探讨了温度调控 VTD-Sb2S3 沉积,以实现光伏电池中的高效载流子传输。在 VTD 工艺中,沉积温度在 480 °C 和 540 °C 之间变化。我们采用 XRD、SEM、EDS 和原子力显微镜技术来获得不同温度下 Sb2S3 薄膜的特性,并评估晶体结构和取向、表面形态、成分和粗糙度等关键特征。将沉积温度从 500 °C 提高到 520 °C 后,突出的晶体取向从 (hk0) 平面变为 (hk1) 平面。当沉积温度超过 520 ℃ 时,(211)面和(221)面变得更加突出。采用 SLG/Mo/Sb2S3/CdS/i-ZnO/AZO/Al 结构的器件是一种基底配置的 TFSC,当 VTD-Sb2S3 吸收膜沉积温度为 520 ℃ 时,其最大功率转换效率为 0.22%。这项研究提出了一种生产特定晶体取向薄膜的可行方法。其主要目的是提高使用 VTD-Sb2S3 吸收体的太阳能电池的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vapor-transport-deposited Sb2S3 thin-film solar cells: Tailoring photovoltaic properties through deposition temperature

Crystal orientation plays a crucial role in the performance of Sb2S3 thin-film solar cells (TFSCs). Among various deposition techniques, vapor transport deposition (VTD) stands out as a viable technique for producing scalable and uniformly deposited thin films, particularly in the solar industry. This study explores temperature-modulated VTD-Sb2S3 deposition to enable efficient carrier transport in photovoltaic cells. In the VTD process, the deposition temperature is altered between 480 °C and 540 °C. XRD, SEM, EDS, and AFM techniques are employed to obtain the characteristics of the Sb2S3 thin films at varying temperatures and evaluate critical features like crystal structure and orientation, surface morphology, composition, and roughness. The prominent crystal orientation changes from the (hk0) to the (hk1) plane after increasing the deposition temperature from 500 to 520 °C. The (211)- and (221)-planes become more prominent when the deposition temperature exceeds 520 °C. The device with the architecture SLG/Mo/Sb2S3/CdS/i-ZnO/AZO/Al, a substrate-configured TFSC, yields a maximum power conversion efficiency of 0.22% when the VTD-Sb2S3 absorber film is deposited at 520 °C. This study presents a promising approach to producing thin films with a preference for specific crystal orientations. The primary aim is to enhance the efficiency of solar cells that utilize VTD-Sb2S3 absorbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信