Cooper J. Mellema , Kevin P. Nguyen , Alex Treacher , Aixa X. Andrade , Nader Pouratian , Vibhash D. Sharma , Padraig O'Suileabhain , Albert A. Montillo
{"title":"利用因果连通性对帕金森病的纵向预后进行分析","authors":"Cooper J. Mellema , Kevin P. Nguyen , Alex Treacher , Aixa X. Andrade , Nader Pouratian , Vibhash D. Sharma , Padraig O'Suileabhain , Albert A. Montillo","doi":"10.1016/j.nicl.2024.103571","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the prevalence of Parkinson’s disease (PD), there are no clinically-accepted neuroimaging biomarkers to predict the trajectory of motor or cognitive decline or differentiate Parkinson’s disease from atypical progressive parkinsonian diseases. Since abnormal connectivity in the motor circuit and basal ganglia have been previously shown as early markers of neurodegeneration, we hypothesize that patterns of interregional connectivity could be useful to form patient-specific predictive models of disease state and of PD progression. We use fMRI data from subjects with Multiple System Atrophy (MSA), Progressive Supranuclear Palsy (PSP), idiopathic PD, and healthy controls to construct predictive models for motor and cognitive decline and differentiate between the four subgroups. Further, we identify the specific connections most informative for progression and diagnosis. When predicting the one-year progression in the MDS-UPDRS-III<span><sup>1*</sup></span> and Montreal Cognitive assessment (MoCA), we achieve new state-of-the-art mean absolute error performance. Additionally, the balanced accuracy we achieve in the diagnosis of PD, MSA, PSP, versus healthy controls surpasses that attained in most clinics, underscoring the relevance of the brain connectivity features. Our models reveal the connectivity between deep nuclei, motor regions, and the thalamus as the most important for prediction. Collectively these results demonstrate the potential of fMRI connectivity as a prognostic biomarker for PD and increase our understanding of this disease.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221315822400010X/pdfft?md5=02570d886084e248e79da6546c5f84cc&pid=1-s2.0-S221315822400010X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Longitudinal prognosis of Parkinson’s outcomes using causal connectivity\",\"authors\":\"Cooper J. Mellema , Kevin P. Nguyen , Alex Treacher , Aixa X. Andrade , Nader Pouratian , Vibhash D. Sharma , Padraig O'Suileabhain , Albert A. Montillo\",\"doi\":\"10.1016/j.nicl.2024.103571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the prevalence of Parkinson’s disease (PD), there are no clinically-accepted neuroimaging biomarkers to predict the trajectory of motor or cognitive decline or differentiate Parkinson’s disease from atypical progressive parkinsonian diseases. Since abnormal connectivity in the motor circuit and basal ganglia have been previously shown as early markers of neurodegeneration, we hypothesize that patterns of interregional connectivity could be useful to form patient-specific predictive models of disease state and of PD progression. We use fMRI data from subjects with Multiple System Atrophy (MSA), Progressive Supranuclear Palsy (PSP), idiopathic PD, and healthy controls to construct predictive models for motor and cognitive decline and differentiate between the four subgroups. Further, we identify the specific connections most informative for progression and diagnosis. When predicting the one-year progression in the MDS-UPDRS-III<span><sup>1*</sup></span> and Montreal Cognitive assessment (MoCA), we achieve new state-of-the-art mean absolute error performance. Additionally, the balanced accuracy we achieve in the diagnosis of PD, MSA, PSP, versus healthy controls surpasses that attained in most clinics, underscoring the relevance of the brain connectivity features. Our models reveal the connectivity between deep nuclei, motor regions, and the thalamus as the most important for prediction. Collectively these results demonstrate the potential of fMRI connectivity as a prognostic biomarker for PD and increase our understanding of this disease.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221315822400010X/pdfft?md5=02570d886084e248e79da6546c5f84cc&pid=1-s2.0-S221315822400010X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221315822400010X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221315822400010X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Longitudinal prognosis of Parkinson’s outcomes using causal connectivity
Despite the prevalence of Parkinson’s disease (PD), there are no clinically-accepted neuroimaging biomarkers to predict the trajectory of motor or cognitive decline or differentiate Parkinson’s disease from atypical progressive parkinsonian diseases. Since abnormal connectivity in the motor circuit and basal ganglia have been previously shown as early markers of neurodegeneration, we hypothesize that patterns of interregional connectivity could be useful to form patient-specific predictive models of disease state and of PD progression. We use fMRI data from subjects with Multiple System Atrophy (MSA), Progressive Supranuclear Palsy (PSP), idiopathic PD, and healthy controls to construct predictive models for motor and cognitive decline and differentiate between the four subgroups. Further, we identify the specific connections most informative for progression and diagnosis. When predicting the one-year progression in the MDS-UPDRS-III1* and Montreal Cognitive assessment (MoCA), we achieve new state-of-the-art mean absolute error performance. Additionally, the balanced accuracy we achieve in the diagnosis of PD, MSA, PSP, versus healthy controls surpasses that attained in most clinics, underscoring the relevance of the brain connectivity features. Our models reveal the connectivity between deep nuclei, motor regions, and the thalamus as the most important for prediction. Collectively these results demonstrate the potential of fMRI connectivity as a prognostic biomarker for PD and increase our understanding of this disease.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.