Elison de Souza Sevalho, Rafael de Souza Rodrigues, Antonia Queiroz Lima de Souza, Afonso Duarte Leão de Souza
{"title":"利用来自亚马逊城市森林片区 Inga edulis Martius 根圈的链霉菌株对单萜烯进行生物转化。","authors":"Elison de Souza Sevalho, Rafael de Souza Rodrigues, Antonia Queiroz Lima de Souza, Afonso Duarte Leão de Souza","doi":"10.1080/10826068.2024.2315476","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the biocatalytic potential of Amazonian actinomycetes for monoterpenes biotransformation. To carry out the present study, eleven actinomycetes of the genus <i>Streptomyces</i> isolated from inga-cipó (<i>Inga edulis</i> Mart.) rhizospheres were tested for their ability to bioconvert the substrates <i>R</i>-(+)-limonene, <i>S</i>-(-)-limonene, 1<i>S</i>-(-)-α-pinene, and (-)-β-pinene as sole carbon and energy source. According to gas chromatography-mass spectrometry analysis, three strains, LabMicra B270, LaBMicrA B310, and LaBMicrA B314, were able to biotransform 1<i>S</i>-(-)-α-pinene after 96 h of growth. However, <i>Streptomyces</i> LaBMicrA B270 was the most promising since it converted after only 72 h all the 1<i>S</i>-(-)-α-pinene mainly into <i>cis</i>-verbenol (74.9±1.24%) and verbenone (18.2±1.20%), compounds that have important biological activities and great industrial interest as additives in foods and cosmetics. These findings can stimulate the development of natural aromas using naturally abundant monoterpenes, ratify the potential of microorganisms from almost unexplored niches such as the Amazonian rhizosphere, and reinforce the importance of preserving those niches.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1051-1057"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biotransformation of monoterpenes using <i>Streptomyces</i> strains from the rhizosphere of <i>Inga edulis</i> Martius from in an Amazonian urban forest fragment.\",\"authors\":\"Elison de Souza Sevalho, Rafael de Souza Rodrigues, Antonia Queiroz Lima de Souza, Afonso Duarte Leão de Souza\",\"doi\":\"10.1080/10826068.2024.2315476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the biocatalytic potential of Amazonian actinomycetes for monoterpenes biotransformation. To carry out the present study, eleven actinomycetes of the genus <i>Streptomyces</i> isolated from inga-cipó (<i>Inga edulis</i> Mart.) rhizospheres were tested for their ability to bioconvert the substrates <i>R</i>-(+)-limonene, <i>S</i>-(-)-limonene, 1<i>S</i>-(-)-α-pinene, and (-)-β-pinene as sole carbon and energy source. According to gas chromatography-mass spectrometry analysis, three strains, LabMicra B270, LaBMicrA B310, and LaBMicrA B314, were able to biotransform 1<i>S</i>-(-)-α-pinene after 96 h of growth. However, <i>Streptomyces</i> LaBMicrA B270 was the most promising since it converted after only 72 h all the 1<i>S</i>-(-)-α-pinene mainly into <i>cis</i>-verbenol (74.9±1.24%) and verbenone (18.2±1.20%), compounds that have important biological activities and great industrial interest as additives in foods and cosmetics. These findings can stimulate the development of natural aromas using naturally abundant monoterpenes, ratify the potential of microorganisms from almost unexplored niches such as the Amazonian rhizosphere, and reinforce the importance of preserving those niches.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\" \",\"pages\":\"1051-1057\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2024.2315476\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2315476","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Biotransformation of monoterpenes using Streptomyces strains from the rhizosphere of Inga edulis Martius from in an Amazonian urban forest fragment.
To investigate the biocatalytic potential of Amazonian actinomycetes for monoterpenes biotransformation. To carry out the present study, eleven actinomycetes of the genus Streptomyces isolated from inga-cipó (Inga edulis Mart.) rhizospheres were tested for their ability to bioconvert the substrates R-(+)-limonene, S-(-)-limonene, 1S-(-)-α-pinene, and (-)-β-pinene as sole carbon and energy source. According to gas chromatography-mass spectrometry analysis, three strains, LabMicra B270, LaBMicrA B310, and LaBMicrA B314, were able to biotransform 1S-(-)-α-pinene after 96 h of growth. However, Streptomyces LaBMicrA B270 was the most promising since it converted after only 72 h all the 1S-(-)-α-pinene mainly into cis-verbenol (74.9±1.24%) and verbenone (18.2±1.20%), compounds that have important biological activities and great industrial interest as additives in foods and cosmetics. These findings can stimulate the development of natural aromas using naturally abundant monoterpenes, ratify the potential of microorganisms from almost unexplored niches such as the Amazonian rhizosphere, and reinforce the importance of preserving those niches.
期刊介绍:
Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.