SGPocket:用于配体-蛋白质结合位点预测的新型图卷积神经网络

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kevin Crampon, Cedric Bourrasset, Stephanie Baud, Luiz Angelo Steffenel
{"title":"SGPocket:用于配体-蛋白质结合位点预测的新型图卷积神经网络","authors":"Kevin Crampon, Cedric Bourrasset, Stephanie Baud, Luiz Angelo Steffenel","doi":"10.2174/0109298673289137240304165758","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Drug research is a long process, taking more than 10 years and requiring considerable financial resources. Therefore, researchers and industrials aim to reduce time and cost. Thus, they use computational simulations like molecular docking to explore huge databases of compounds and extract the most promising ones for further tests. Structure-based molecular docking is a complex process mixing surface exploration and energy computation to find the minimal free energy of binding corresponding to the best interaction location.</p><p><strong>Objective: </strong>Our work is developed in the ligand-protein context, where ligands are small compounds like drugs. In most cases, no information is known about where on the protein surface the ligand will bind. Thus, the whole protein surface must be explored, which takes a huge amount of time.</p><p><strong>Methods: </strong>We have developed SGPocket (meaning Spherical Graph Pocket), a binding site prediction method. Our method allows us to reduce the explored protein surface using deep learning without any information about a ligand. SGPocket uses the spherical graph convolutional operator working on a spherical relative positioning of amino acids in the protein. Then, a final step of clustering extracts the binding sites.</p><p><strong>Results: </strong>Tested and compared (with well-known binding site prediction methods) on a hand-made dataset, our method performed well and can reduce the docking computing time.</p><p><strong>Conclusion: </strong>Thus, SGPocket allows the reduction of the exploration surface in the molecular docking process by restricting the simulation only to the site(s) predicted to be interesting.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SGPocket: A New Graph Convolutional Neural Network for Ligand-protein Binding Site Prediction.\",\"authors\":\"Kevin Crampon, Cedric Bourrasset, Stephanie Baud, Luiz Angelo Steffenel\",\"doi\":\"10.2174/0109298673289137240304165758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Drug research is a long process, taking more than 10 years and requiring considerable financial resources. Therefore, researchers and industrials aim to reduce time and cost. Thus, they use computational simulations like molecular docking to explore huge databases of compounds and extract the most promising ones for further tests. Structure-based molecular docking is a complex process mixing surface exploration and energy computation to find the minimal free energy of binding corresponding to the best interaction location.</p><p><strong>Objective: </strong>Our work is developed in the ligand-protein context, where ligands are small compounds like drugs. In most cases, no information is known about where on the protein surface the ligand will bind. Thus, the whole protein surface must be explored, which takes a huge amount of time.</p><p><strong>Methods: </strong>We have developed SGPocket (meaning Spherical Graph Pocket), a binding site prediction method. Our method allows us to reduce the explored protein surface using deep learning without any information about a ligand. SGPocket uses the spherical graph convolutional operator working on a spherical relative positioning of amino acids in the protein. Then, a final step of clustering extracts the binding sites.</p><p><strong>Results: </strong>Tested and compared (with well-known binding site prediction methods) on a hand-made dataset, our method performed well and can reduce the docking computing time.</p><p><strong>Conclusion: </strong>Thus, SGPocket allows the reduction of the exploration surface in the molecular docking process by restricting the simulation only to the site(s) predicted to be interesting.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673289137240304165758\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673289137240304165758","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

背景:药物研究是一个漫长的过程,需要花费 10 多年的时间和大量的财力。因此,研究人员和企业都希望缩短时间,降低成本。因此,他们使用分子对接等计算模拟来探索庞大的化合物数据库,并提取最有前景的化合物进行进一步测试。基于结构的分子对接是一个复杂的过程,它混合了表面探索和能量计算,以找到与最佳相互作用位置相对应的最小结合自由能:我们的工作是在配体-蛋白质背景下开展的,其中配体是药物等小化合物。在大多数情况下,配体在蛋白质表面的哪个位置结合是未知的。因此,必须探索整个蛋白质表面,这需要花费大量时间:我们开发了一种结合点预测方法 SGPocket(意为球形图口袋)。我们的方法允许我们在没有任何配体信息的情况下,利用深度学习减少已探索的蛋白质表面。SGPocket 使用球形图卷积算子对蛋白质中的氨基酸进行球形相对定位。最后,通过聚类提取出结合位点:结果:在手工制作的数据集上进行测试和比较(与著名的结合位点预测方法),我们的方法表现良好,可以减少对接计算时间:因此,SGPocket 可以在分子对接过程中减少探索面,只对预测为感兴趣的结合位点进行模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SGPocket: A New Graph Convolutional Neural Network for Ligand-protein Binding Site Prediction.

Background: Drug research is a long process, taking more than 10 years and requiring considerable financial resources. Therefore, researchers and industrials aim to reduce time and cost. Thus, they use computational simulations like molecular docking to explore huge databases of compounds and extract the most promising ones for further tests. Structure-based molecular docking is a complex process mixing surface exploration and energy computation to find the minimal free energy of binding corresponding to the best interaction location.

Objective: Our work is developed in the ligand-protein context, where ligands are small compounds like drugs. In most cases, no information is known about where on the protein surface the ligand will bind. Thus, the whole protein surface must be explored, which takes a huge amount of time.

Methods: We have developed SGPocket (meaning Spherical Graph Pocket), a binding site prediction method. Our method allows us to reduce the explored protein surface using deep learning without any information about a ligand. SGPocket uses the spherical graph convolutional operator working on a spherical relative positioning of amino acids in the protein. Then, a final step of clustering extracts the binding sites.

Results: Tested and compared (with well-known binding site prediction methods) on a hand-made dataset, our method performed well and can reduce the docking computing time.

Conclusion: Thus, SGPocket allows the reduction of the exploration surface in the molecular docking process by restricting the simulation only to the site(s) predicted to be interesting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信