{"title":"黑暗条件下的低温贮藏改善了药用珍贵树种板蓝根(Plumbago zeylanica)合成种子的体外再生能力","authors":"Ravishankar Chauhan, Priya Banjare, Subir Kumar Parey, Afreen Anjum, Afaque Quraishi","doi":"10.1007/s11627-024-10416-1","DOIUrl":null,"url":null,"abstract":"<p>Medicinal applications of <i>Plumbago</i> <i>zeylanica</i> and its metabolites on various diseases and low viability and inconsistent germination of its seeds are the reasons behind the loss of its genetic diversity. Hence, an efficient protocol for the short-term storage of <i>P.</i> <i>zeylanica</i> synthetic seeds, which is an overexploited medicinally valuable plant, was developed. Initially, <i>in vitro</i> culture was performed from nodal explants to develop synthetic seeds from its proliferated shoots. Murashige and Skoog (MS) medium augmented with 0.5 mg L<sup>−1</sup> 6-benzylaminopurine (BAP) resulted in the best morphogenetic response. Thereafter, the developed synseeds were stored for 2 wk at a temperature of 10 or 25°C in different conditions and further evaluated for regeneration. Higher re-growth rate (80%) and the identical morphogenetic response were recorded for the <i>P.</i> <i>zeylanica</i> synthetic seeds, which were stored at a temperature of 10°C in dark condition after its storage period. As per the available literature, this is the first report pertaining to <i>in vitro</i> low-temperature storage of synthetic seeds of <i>P.</i> <i>zeylanica</i> and can further be utilized for the conservation of elite clones for the study of medicinally potent species.</p>","PeriodicalId":13293,"journal":{"name":"In Vitro Cellular & Developmental Biology - Plant","volume":"8 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature storage in dark condition improved the in vitro regeneration of Plumbago zeylanica synthetic seeds: a medicinally valuable species\",\"authors\":\"Ravishankar Chauhan, Priya Banjare, Subir Kumar Parey, Afreen Anjum, Afaque Quraishi\",\"doi\":\"10.1007/s11627-024-10416-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Medicinal applications of <i>Plumbago</i> <i>zeylanica</i> and its metabolites on various diseases and low viability and inconsistent germination of its seeds are the reasons behind the loss of its genetic diversity. Hence, an efficient protocol for the short-term storage of <i>P.</i> <i>zeylanica</i> synthetic seeds, which is an overexploited medicinally valuable plant, was developed. Initially, <i>in vitro</i> culture was performed from nodal explants to develop synthetic seeds from its proliferated shoots. Murashige and Skoog (MS) medium augmented with 0.5 mg L<sup>−1</sup> 6-benzylaminopurine (BAP) resulted in the best morphogenetic response. Thereafter, the developed synseeds were stored for 2 wk at a temperature of 10 or 25°C in different conditions and further evaluated for regeneration. Higher re-growth rate (80%) and the identical morphogenetic response were recorded for the <i>P.</i> <i>zeylanica</i> synthetic seeds, which were stored at a temperature of 10°C in dark condition after its storage period. As per the available literature, this is the first report pertaining to <i>in vitro</i> low-temperature storage of synthetic seeds of <i>P.</i> <i>zeylanica</i> and can further be utilized for the conservation of elite clones for the study of medicinally potent species.</p>\",\"PeriodicalId\":13293,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology - Plant\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology - Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11627-024-10416-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology - Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11627-024-10416-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Low-temperature storage in dark condition improved the in vitro regeneration of Plumbago zeylanica synthetic seeds: a medicinally valuable species
Medicinal applications of Plumbagozeylanica and its metabolites on various diseases and low viability and inconsistent germination of its seeds are the reasons behind the loss of its genetic diversity. Hence, an efficient protocol for the short-term storage of P.zeylanica synthetic seeds, which is an overexploited medicinally valuable plant, was developed. Initially, in vitro culture was performed from nodal explants to develop synthetic seeds from its proliferated shoots. Murashige and Skoog (MS) medium augmented with 0.5 mg L−1 6-benzylaminopurine (BAP) resulted in the best morphogenetic response. Thereafter, the developed synseeds were stored for 2 wk at a temperature of 10 or 25°C in different conditions and further evaluated for regeneration. Higher re-growth rate (80%) and the identical morphogenetic response were recorded for the P.zeylanica synthetic seeds, which were stored at a temperature of 10°C in dark condition after its storage period. As per the available literature, this is the first report pertaining to in vitro low-temperature storage of synthetic seeds of P.zeylanica and can further be utilized for the conservation of elite clones for the study of medicinally potent species.
期刊介绍:
Founded in 1965, In Vitro Cellular & Developmental Biology - Plant is the only journal devoted solely to worldwide coverage of in vitro biology in plants. Its high-caliber original research and reviews make it required reading for anyone who needs comprehensive coverage of the latest developments and state-of-the-art research in plant cell and tissue culture and biotechnology from around the world.