{"title":"植物特异性 Gγ 蛋白的农艺潜力","authors":"Sona Pandey","doi":"10.1007/s12298-024-01428-7","DOIUrl":null,"url":null,"abstract":"<p>The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"21 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agronomic potential of plant-specific Gγ proteins\",\"authors\":\"Sona Pandey\",\"doi\":\"10.1007/s12298-024-01428-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-024-01428-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01428-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
维管束植物特有的 III 型 Gγ 蛋白已成为生物技术应用的重要目标。拟南芥 AGG3、水稻粒度 3 (GS3)、密直圆锥花序 1 (DEP1) 和 GGC2 就是这些蛋白的典型代表,它们调控植物的株型、种子大小、重量和质量、氮利用效率以及多种胁迫反应。这些 Gγ 蛋白是植物异源三聚体 G 蛋白复合物的一个组成部分,由于存在一个富含半胱氨酸的长 C 端区域,它们与典型的 Gγ 蛋白不同。大多数谷物基因组编码三种或三种以上的此类蛋白,它们具有相似的 N 端 Gγ 结构域,但 C 端结构域的长度各不相同。据推测,C 端结构域赋予了蛋白质功能的特异性。耐人寻味的是,许多栽培谷物品种的一个或多个蛋白质中都存在该区域的天然缺失,但蛋白质功能的机理细节仍然令人困惑。据报道,在不同的作物或不同的环境条件下,C 端区域缺失会产生不同的影响,有时甚至是截然相反的影响。本综述总结了 III 型 Gγ 蛋白的已知作用、可能的作用机制,以及全面了解其农艺潜力所需的视角。
The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.