切比雪夫有理函数相对于实线子集的渐近性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Benjamin Eichinger, Milivoje Lukić, Giorgio Young
{"title":"切比雪夫有理函数相对于实线子集的渐近性","authors":"Benjamin Eichinger, Milivoje Lukić, Giorgio Young","doi":"10.1007/s00365-023-09670-0","DOIUrl":null,"url":null,"abstract":"<p>There is a vast theory of Chebyshev and residual polynomials and their asymptotic behavior. The former ones maximize the leading coefficient and the latter ones maximize the point evaluation with respect to an <span>\\(L^\\infty \\)</span> norm. We study Chebyshev and residual extremal problems for rational functions with real poles with respect to subsets of <span>\\(\\overline{{{\\mathbb {R}}}}\\)</span>. We prove root asymptotics under fairly general assumptions on the sequence of poles. Moreover, we prove Szegő–Widom asymptotics for sets which are regular for the Dirichlet problem and obey the Parreau–Widom and DCT conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of Chebyshev Rational Functions with Respect to Subsets of the Real Line\",\"authors\":\"Benjamin Eichinger, Milivoje Lukić, Giorgio Young\",\"doi\":\"10.1007/s00365-023-09670-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is a vast theory of Chebyshev and residual polynomials and their asymptotic behavior. The former ones maximize the leading coefficient and the latter ones maximize the point evaluation with respect to an <span>\\\\(L^\\\\infty \\\\)</span> norm. We study Chebyshev and residual extremal problems for rational functions with real poles with respect to subsets of <span>\\\\(\\\\overline{{{\\\\mathbb {R}}}}\\\\)</span>. We prove root asymptotics under fairly general assumptions on the sequence of poles. Moreover, we prove Szegő–Widom asymptotics for sets which are regular for the Dirichlet problem and obey the Parreau–Widom and DCT conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-023-09670-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-023-09670-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

关于切比雪夫多项式和残差多项式及其渐近行为有大量理论。前者最大化前导系数,后者最大化关于 \(L^\infty \) 准则的点评估。我们研究了关于 \(\overline{{\mathbb {R}}}}\)子集的、具有实极点的有理函数的切比雪夫和残差极值问题。我们在极点序列的一般假设下证明了根渐近性。此外,我们还证明了迪里夏特问题正则集合的 Szegő-Widom 渐近线,这些集合服从 Parreau-Widom 和 DCT 条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of Chebyshev Rational Functions with Respect to Subsets of the Real Line

There is a vast theory of Chebyshev and residual polynomials and their asymptotic behavior. The former ones maximize the leading coefficient and the latter ones maximize the point evaluation with respect to an \(L^\infty \) norm. We study Chebyshev and residual extremal problems for rational functions with real poles with respect to subsets of \(\overline{{{\mathbb {R}}}}\). We prove root asymptotics under fairly general assumptions on the sequence of poles. Moreover, we prove Szegő–Widom asymptotics for sets which are regular for the Dirichlet problem and obey the Parreau–Widom and DCT conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信