Yonglin Yang, Shenghu Ding, Xing Li, Wenshuai Wang
{"title":"多孔材料弹性涂层中两个冲头的接触问题","authors":"Yonglin Yang, Shenghu Ding, Xing Li, Wenshuai Wang","doi":"10.1007/s10704-023-00761-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the contact problem of an elastic layer that is perfectly attached to a porous half-space by two rigid flat punches with collinear symmetry. Using integral transformation, the problem is condensed to a singular integral equation of the Cauchy type. Then, the exact expressions for the surface contact stress and surface interface displacement are provided. By using the Gauss–Chebyshev technique, the integral equations are solved numerically, and the variations of the unknown contact stresses and deformations for different parameters are addressed. The results indicate that stress concentration is typically higher on the outer edge of the contact area compared to the inner edge. This also explains why surface damage is more likely to occur on the outer edge in elastic and poroelastic materials. Due to the interaction between the two punches, there will be a superposition of normal displacements at the center. The deformation or bulging at the center can be managed by adjusting the parameter values, allowing the engineered material to fulfill its intended purpose. The potential applications of these research findings encompass safeguarding porous structures against contact-related deformation and damage.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"265 - 291"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact problem of two punches in an elastic coating attached to a porous material\",\"authors\":\"Yonglin Yang, Shenghu Ding, Xing Li, Wenshuai Wang\",\"doi\":\"10.1007/s10704-023-00761-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the contact problem of an elastic layer that is perfectly attached to a porous half-space by two rigid flat punches with collinear symmetry. Using integral transformation, the problem is condensed to a singular integral equation of the Cauchy type. Then, the exact expressions for the surface contact stress and surface interface displacement are provided. By using the Gauss–Chebyshev technique, the integral equations are solved numerically, and the variations of the unknown contact stresses and deformations for different parameters are addressed. The results indicate that stress concentration is typically higher on the outer edge of the contact area compared to the inner edge. This also explains why surface damage is more likely to occur on the outer edge in elastic and poroelastic materials. Due to the interaction between the two punches, there will be a superposition of normal displacements at the center. The deformation or bulging at the center can be managed by adjusting the parameter values, allowing the engineered material to fulfill its intended purpose. The potential applications of these research findings encompass safeguarding porous structures against contact-related deformation and damage.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"246 2-3\",\"pages\":\"265 - 291\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00761-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00761-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Contact problem of two punches in an elastic coating attached to a porous material
This paper investigates the contact problem of an elastic layer that is perfectly attached to a porous half-space by two rigid flat punches with collinear symmetry. Using integral transformation, the problem is condensed to a singular integral equation of the Cauchy type. Then, the exact expressions for the surface contact stress and surface interface displacement are provided. By using the Gauss–Chebyshev technique, the integral equations are solved numerically, and the variations of the unknown contact stresses and deformations for different parameters are addressed. The results indicate that stress concentration is typically higher on the outer edge of the contact area compared to the inner edge. This also explains why surface damage is more likely to occur on the outer edge in elastic and poroelastic materials. Due to the interaction between the two punches, there will be a superposition of normal displacements at the center. The deformation or bulging at the center can be managed by adjusting the parameter values, allowing the engineered material to fulfill its intended purpose. The potential applications of these research findings encompass safeguarding porous structures against contact-related deformation and damage.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.