具有可定向一维扩展吸引子和收缩排斥子的公理 A 衍变的分类

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma
{"title":"具有可定向一维扩展吸引子和收缩排斥子的公理 A 衍变的分类","authors":"Vyacheslav Z. Grines,&nbsp;Vladislav S. Medvedev,&nbsp;Evgeny V. Zhuzhoma","doi":"10.1134/S156035472401009X","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb{G}_{k}^{cod1}(M^{n})\\)</span>, <span>\\(k\\geqslant 1\\)</span>, be the set of axiom A diffeomorphisms such that\nthe nonwandering set of any <span>\\(f\\in\\mathbb{G}_{k}^{cod1}(M^{n})\\)</span> consists of <span>\\(k\\)</span> orientable connected codimension one expanding attractors and contracting repellers where <span>\\(M^{n}\\)</span> is a closed orientable <span>\\(n\\)</span>-manifold, <span>\\(n\\geqslant 3\\)</span>. We classify the diffeomorphisms from <span>\\(\\mathbb{G}_{k}^{cod1}(M^{n})\\)</span> up to the global conjugacy on nonwandering sets. In addition, we show that any <span>\\(f\\in\\mathbb{G}_{k}^{cod1}(M^{n})\\)</span> is <span>\\(\\Omega\\)</span>-stable and is not structurally stable. One describes the topological structure of a supporting manifold <span>\\(M^{n}\\)</span>.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 and Dmitry Turaev)","pages":"143 - 155"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Axiom A Diffeomorphisms with Orientable Codimension One Expanding Attractors and Contracting Repellers\",\"authors\":\"Vyacheslav Z. Grines,&nbsp;Vladislav S. Medvedev,&nbsp;Evgeny V. Zhuzhoma\",\"doi\":\"10.1134/S156035472401009X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathbb{G}_{k}^{cod1}(M^{n})\\\\)</span>, <span>\\\\(k\\\\geqslant 1\\\\)</span>, be the set of axiom A diffeomorphisms such that\\nthe nonwandering set of any <span>\\\\(f\\\\in\\\\mathbb{G}_{k}^{cod1}(M^{n})\\\\)</span> consists of <span>\\\\(k\\\\)</span> orientable connected codimension one expanding attractors and contracting repellers where <span>\\\\(M^{n}\\\\)</span> is a closed orientable <span>\\\\(n\\\\)</span>-manifold, <span>\\\\(n\\\\geqslant 3\\\\)</span>. We classify the diffeomorphisms from <span>\\\\(\\\\mathbb{G}_{k}^{cod1}(M^{n})\\\\)</span> up to the global conjugacy on nonwandering sets. In addition, we show that any <span>\\\\(f\\\\in\\\\mathbb{G}_{k}^{cod1}(M^{n})\\\\)</span> is <span>\\\\(\\\\Omega\\\\)</span>-stable and is not structurally stable. One describes the topological structure of a supporting manifold <span>\\\\(M^{n}\\\\)</span>.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"29 and Dmitry Turaev)\",\"pages\":\"143 - 155\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S156035472401009X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S156035472401009X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathbb{G}_{k}^{cod1}(M^{n})\), \(k\geqslant 1\)、是公理 A 差分形的集合,使得任何 \(f\in\mathbb{G}_{k}^{cod1}(M^{n})\ 的非漫游集都由\(k\) 可定向连通的一维扩展吸引子和收缩排斥子组成,其中 \(M^{n}\ 是封闭可定向的 \(n\)-manifold, \(n\geqslant 3\).我们将从\(\mathbb{G}_{k}^{cod1}(M^{n})\)到非漫游集上的全局共轭的衍射进行了分类。此外,我们证明了任何 \(fin\mathbb{G}_{k}^{cod1}(M^{n})\) 都是(\Omega\)稳定的,而不是结构稳定的。一个描述了支持流形 \(M^{n}\)的拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Axiom A Diffeomorphisms with Orientable Codimension One Expanding Attractors and Contracting Repellers

Let \(\mathbb{G}_{k}^{cod1}(M^{n})\), \(k\geqslant 1\), be the set of axiom A diffeomorphisms such that the nonwandering set of any \(f\in\mathbb{G}_{k}^{cod1}(M^{n})\) consists of \(k\) orientable connected codimension one expanding attractors and contracting repellers where \(M^{n}\) is a closed orientable \(n\)-manifold, \(n\geqslant 3\). We classify the diffeomorphisms from \(\mathbb{G}_{k}^{cod1}(M^{n})\) up to the global conjugacy on nonwandering sets. In addition, we show that any \(f\in\mathbb{G}_{k}^{cod1}(M^{n})\) is \(\Omega\)-stable and is not structurally stable. One describes the topological structure of a supporting manifold \(M^{n}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信