论对称椭圆轨道的分岔

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Marina S. Gonchenko
{"title":"论对称椭圆轨道的分岔","authors":"Marina S. Gonchenko","doi":"10.1134/S1560354724010039","DOIUrl":null,"url":null,"abstract":"<div><p>We study bifurcations of symmetric elliptic fixed points in the case of <i>p</i>:<i>q</i> resonances with odd <span>\\(q\\geqslant 3\\)</span>. We consider the case where the initial area-preserving map <span>\\(\\bar{z}=\\lambda z+Q(z,z^{*})\\)</span> possesses the central symmetry, i. e., is invariant under the change of variables <span>\\(z\\to-z\\)</span>, <span>\\(z^{*}\\to-z^{*}\\)</span>. We construct normal forms for such maps in the case <span>\\(\\lambda=e^{i2\\pi\\frac{p}{q}}\\)</span>, where <span>\\(p\\)</span> and <span>\\(q\\)</span> are mutually prime integer numbers, <span>\\(p\\leqslant q\\)</span> and <span>\\(q\\)</span> is odd, and study local bifurcations of the fixed point <span>\\(z=0\\)</span> in various settings. We prove the appearance of garlands consisting of four <span>\\(q\\)</span>-periodic orbits, two orbits are elliptic and two orbits are saddles, and describe the corresponding bifurcation diagrams for one- and two-parameter families. We also consider the case where the initial map is reversible and find conditions where nonsymmetric periodic orbits of the garlands are nonconservative (contain symmetric pairs of stable and unstable orbits as well as area-contracting and area-expanding saddles).</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 and Dmitry Turaev)","pages":"25 - 39"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Bifurcations of Symmetric Elliptic Orbits\",\"authors\":\"Marina S. Gonchenko\",\"doi\":\"10.1134/S1560354724010039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study bifurcations of symmetric elliptic fixed points in the case of <i>p</i>:<i>q</i> resonances with odd <span>\\\\(q\\\\geqslant 3\\\\)</span>. We consider the case where the initial area-preserving map <span>\\\\(\\\\bar{z}=\\\\lambda z+Q(z,z^{*})\\\\)</span> possesses the central symmetry, i. e., is invariant under the change of variables <span>\\\\(z\\\\to-z\\\\)</span>, <span>\\\\(z^{*}\\\\to-z^{*}\\\\)</span>. We construct normal forms for such maps in the case <span>\\\\(\\\\lambda=e^{i2\\\\pi\\\\frac{p}{q}}\\\\)</span>, where <span>\\\\(p\\\\)</span> and <span>\\\\(q\\\\)</span> are mutually prime integer numbers, <span>\\\\(p\\\\leqslant q\\\\)</span> and <span>\\\\(q\\\\)</span> is odd, and study local bifurcations of the fixed point <span>\\\\(z=0\\\\)</span> in various settings. We prove the appearance of garlands consisting of four <span>\\\\(q\\\\)</span>-periodic orbits, two orbits are elliptic and two orbits are saddles, and describe the corresponding bifurcation diagrams for one- and two-parameter families. We also consider the case where the initial map is reversible and find conditions where nonsymmetric periodic orbits of the garlands are nonconservative (contain symmetric pairs of stable and unstable orbits as well as area-contracting and area-expanding saddles).</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"29 and Dmitry Turaev)\",\"pages\":\"25 - 39\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354724010039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724010039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有奇数共振的 p:q 对称椭圆定点的分岔(q\geqslant 3\ )。我们考虑了初始面积保留映射((\bar{z}=\lambda z+Q(z,z^{*})\)具有中心对称性的情况,即在变量变化下(\(z\to-z), \(z^{*}\to-z^{*}\)是不变的。我们为这种映射在 \(lambda=e^{i2\pi\frac{p}{q}}\) 的情况下构造了正常形式,其中 \(p\) 和 \(q\) 是互素整数, \(p\leqslant q\) 和 \(q\) 是奇数,并研究了在不同情况下定点 \(z=0\) 的局部分岔。我们证明了由四个 \(q\)-periodic 轨道组成的花环的出现,其中两个轨道是椭圆轨道,两个轨道是鞍轨道,并描述了一参数族和二参数族的相应分岔图。我们还考虑了初始映射是可逆的情况,并找到了花环的非对称周期轨道是非守恒的条件(包含对称的稳定和不稳定轨道对以及面积收缩和面积扩大的鞍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Bifurcations of Symmetric Elliptic Orbits

On Bifurcations of Symmetric Elliptic Orbits

We study bifurcations of symmetric elliptic fixed points in the case of p:q resonances with odd \(q\geqslant 3\). We consider the case where the initial area-preserving map \(\bar{z}=\lambda z+Q(z,z^{*})\) possesses the central symmetry, i. e., is invariant under the change of variables \(z\to-z\), \(z^{*}\to-z^{*}\). We construct normal forms for such maps in the case \(\lambda=e^{i2\pi\frac{p}{q}}\), where \(p\) and \(q\) are mutually prime integer numbers, \(p\leqslant q\) and \(q\) is odd, and study local bifurcations of the fixed point \(z=0\) in various settings. We prove the appearance of garlands consisting of four \(q\)-periodic orbits, two orbits are elliptic and two orbits are saddles, and describe the corresponding bifurcation diagrams for one- and two-parameter families. We also consider the case where the initial map is reversible and find conditions where nonsymmetric periodic orbits of the garlands are nonconservative (contain symmetric pairs of stable and unstable orbits as well as area-contracting and area-expanding saddles).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信