{"title":"胰腺β细胞的 Pernarowski 模型中从尖峰到爆发的准周期性转变","authors":"Haniyeh Fallah, Andrey L. Shilnikov","doi":"10.1134/S1560354724010076","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies quasi-periodicity phenomena appearing at the transition from spiking to bursting activities in the Pernarowski model of pancreatic beta cells. Continuing the parameter, we show that the torus bifurcation is responsible for the transition between spiking and bursting. Our investigation involves different torus bifurcations, such as supercritical torus bifurcation, saddle torus canard, resonant torus, self-similar torus fractals, and torus destruction. These bifurcations give rise to complex or multistable dynamics. Despite being a dissipative system, the model still exhibits KAM tori, as we have illustrated. We provide two scenarios for the onset of resonant tori using the Poincaré return map, where global bifurcations happen because of the saddle-node or inverse period-doubling bifurcations. The blue-sky catastrophe takes place at the transition route from bursting to spiking.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 and Dmitry Turaev)","pages":"100 - 119"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Periodicity at Transition from Spiking to Bursting in the Pernarowski Model of Pancreatic Beta Cells\",\"authors\":\"Haniyeh Fallah, Andrey L. Shilnikov\",\"doi\":\"10.1134/S1560354724010076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies quasi-periodicity phenomena appearing at the transition from spiking to bursting activities in the Pernarowski model of pancreatic beta cells. Continuing the parameter, we show that the torus bifurcation is responsible for the transition between spiking and bursting. Our investigation involves different torus bifurcations, such as supercritical torus bifurcation, saddle torus canard, resonant torus, self-similar torus fractals, and torus destruction. These bifurcations give rise to complex or multistable dynamics. Despite being a dissipative system, the model still exhibits KAM tori, as we have illustrated. We provide two scenarios for the onset of resonant tori using the Poincaré return map, where global bifurcations happen because of the saddle-node or inverse period-doubling bifurcations. The blue-sky catastrophe takes place at the transition route from bursting to spiking.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"29 and Dmitry Turaev)\",\"pages\":\"100 - 119\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354724010076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724010076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了在胰腺β细胞的 Pernarowski 模型中,从尖峰活动向爆发活动过渡时出现的准周期现象。在继续研究该参数时,我们发现环形分岔是尖峰和爆发之间过渡的原因。我们的研究涉及不同的环形分岔,如超临界环形分岔、鞍形环形卡纳、共振环形、自相似环形分形和环形破坏。这些分岔产生了复杂或多稳态动力学。尽管这是一个耗散系统,但正如我们已经说明的那样,该模型仍然表现出 KAM 转矩。我们利用波恩卡莱回归图为共振环的发生提供了两种情况,其中全局分岔的发生是由于鞍节点或反周期加倍分岔。蓝天灾难发生在从猝发到尖峰的过渡路线上。
Quasi-Periodicity at Transition from Spiking to Bursting in the Pernarowski Model of Pancreatic Beta Cells
This paper studies quasi-periodicity phenomena appearing at the transition from spiking to bursting activities in the Pernarowski model of pancreatic beta cells. Continuing the parameter, we show that the torus bifurcation is responsible for the transition between spiking and bursting. Our investigation involves different torus bifurcations, such as supercritical torus bifurcation, saddle torus canard, resonant torus, self-similar torus fractals, and torus destruction. These bifurcations give rise to complex or multistable dynamics. Despite being a dissipative system, the model still exhibits KAM tori, as we have illustrated. We provide two scenarios for the onset of resonant tori using the Poincaré return map, where global bifurcations happen because of the saddle-node or inverse period-doubling bifurcations. The blue-sky catastrophe takes place at the transition route from bursting to spiking.
期刊介绍:
Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.