具有相关噪声的迪安-川崎方程和非线性道森-瓦塔那贝方程的良好拟合度

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Benjamin Fehrman, Benjamin Gess
{"title":"具有相关噪声的迪安-川崎方程和非线性道森-瓦塔那贝方程的良好拟合度","authors":"Benjamin Fehrman,&nbsp;Benjamin Gess","doi":"10.1007/s00205-024-01963-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove the well-posedness of the generalized Dean–Kawasaki equation driven by noise that is white in time and colored in space. The results treat diffusion coefficients that are only locally <span>\\({1}/{2}\\)</span>-Hölder continuous, including the square root. This solves several open problems, including the well-posedness of the Dean–Kawasaki equation and the nonlinear Dawson–Watanabe equation with correlated noise.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posedness of the Dean–Kawasaki and the Nonlinear Dawson–Watanabe Equation with Correlated Noise\",\"authors\":\"Benjamin Fehrman,&nbsp;Benjamin Gess\",\"doi\":\"10.1007/s00205-024-01963-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove the well-posedness of the generalized Dean–Kawasaki equation driven by noise that is white in time and colored in space. The results treat diffusion coefficients that are only locally <span>\\\\({1}/{2}\\\\)</span>-Hölder continuous, including the square root. This solves several open problems, including the well-posedness of the Dean–Kawasaki equation and the nonlinear Dawson–Watanabe equation with correlated noise.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01963-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01963-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文证明了广义迪安-川崎方程在时间上为白噪声、空间上为彩色噪声驱动下的良好求解性。结果处理了仅局部 \({1}/{2}\) -Hölder 连续的扩散系数,包括平方根。这解决了几个悬而未决的问题,包括 Dean-Kawasaki 方程和具有相关噪声的非线性 Dawson-Watanabe 方程的良好拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-Posedness of the Dean–Kawasaki and the Nonlinear Dawson–Watanabe Equation with Correlated Noise

In this paper we prove the well-posedness of the generalized Dean–Kawasaki equation driven by noise that is white in time and colored in space. The results treat diffusion coefficients that are only locally \({1}/{2}\)-Hölder continuous, including the square root. This solves several open problems, including the well-posedness of the Dean–Kawasaki equation and the nonlinear Dawson–Watanabe equation with correlated noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信