{"title":"路面结构评估中用于基岩状况分类的机器学习模型:比较研究","authors":"Yujing Wang, Yanqing Zhao, Guozhi Fu","doi":"10.1007/s10921-024-01048-x","DOIUrl":null,"url":null,"abstract":"<div><p>Pavement performance evaluation based on modulus is crucial for controlling the overall performance of pavements and decisions making throughout the pavement’s life cycle. Falling weight deflectometer (FWD) tests are commonly employed to collect deflection data, which is subsequently back-calculated to get each layer’s modulus. However, existing studies lack a complete framework for incorporating the bedrock condition in the back-calculation process. Here, an integrated process of pavement performance evaluation utilizing FWD tests is proposed, and the focus is on the classification of bedrock condition by modern classification algorithms (BPNN, MLP, SVM, and RF) to determine the presence or absence of bedrock and its depth range. The implementation of classification process allows for the inclusion of bedrock influence in the back-calculation process, thereby improving the accuracy of modulus results. Results from the four classification algorithms reveals that RF is the most suitable for classifying bedrock depth, exhibiting superior overall performance. The proposed integrated back-calculation process enables a comprehensive and objective evaluation of pavement structural performance, providing a valuable framework for informed decisions making.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Models for Bedrock Condition Classification in Pavement Structure Evaluation: A Comparative Study\",\"authors\":\"Yujing Wang, Yanqing Zhao, Guozhi Fu\",\"doi\":\"10.1007/s10921-024-01048-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pavement performance evaluation based on modulus is crucial for controlling the overall performance of pavements and decisions making throughout the pavement’s life cycle. Falling weight deflectometer (FWD) tests are commonly employed to collect deflection data, which is subsequently back-calculated to get each layer’s modulus. However, existing studies lack a complete framework for incorporating the bedrock condition in the back-calculation process. Here, an integrated process of pavement performance evaluation utilizing FWD tests is proposed, and the focus is on the classification of bedrock condition by modern classification algorithms (BPNN, MLP, SVM, and RF) to determine the presence or absence of bedrock and its depth range. The implementation of classification process allows for the inclusion of bedrock influence in the back-calculation process, thereby improving the accuracy of modulus results. Results from the four classification algorithms reveals that RF is the most suitable for classifying bedrock depth, exhibiting superior overall performance. The proposed integrated back-calculation process enables a comprehensive and objective evaluation of pavement structural performance, providing a valuable framework for informed decisions making.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01048-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01048-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Machine Learning Models for Bedrock Condition Classification in Pavement Structure Evaluation: A Comparative Study
Pavement performance evaluation based on modulus is crucial for controlling the overall performance of pavements and decisions making throughout the pavement’s life cycle. Falling weight deflectometer (FWD) tests are commonly employed to collect deflection data, which is subsequently back-calculated to get each layer’s modulus. However, existing studies lack a complete framework for incorporating the bedrock condition in the back-calculation process. Here, an integrated process of pavement performance evaluation utilizing FWD tests is proposed, and the focus is on the classification of bedrock condition by modern classification algorithms (BPNN, MLP, SVM, and RF) to determine the presence or absence of bedrock and its depth range. The implementation of classification process allows for the inclusion of bedrock influence in the back-calculation process, thereby improving the accuracy of modulus results. Results from the four classification algorithms reveals that RF is the most suitable for classifying bedrock depth, exhibiting superior overall performance. The proposed integrated back-calculation process enables a comprehensive and objective evaluation of pavement structural performance, providing a valuable framework for informed decisions making.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.