{"title":"在活性润滑介质中重负载摩擦对中工作的抗摩擦材料的物理化学摩擦力学","authors":"L. I. Kuksenova, V. I. Savenko","doi":"10.3103/S1068366623060077","DOIUrl":null,"url":null,"abstract":"<p>Within the framework of physicochemical mechanics (the Rehbinder effect), the problems of the plasticizing and strengthening effect of the lubricating medium on the near-surface layers of metal tribomaterials are analyzed. The influence of modeling (petroleum jelly oil, glycerin, mineral oils, glycerin-based hydraulic fluids) and industrial (Buksol, Puma, and M-14V2) lubricant media that contain surfactants, is investigated on the main tribological (coefficient of friction, wear intensity), strength (yield strength, microhardness) and microstructural (broadening of X-ray lines, dislocation density and crystal lattice parameter) characteristics, as well as on the processes of diffusion redistribution of alloying elements in surface layers of tribomaterials, such as copper, brass, and bronze, when they are rubbed together with steel. The analysis of the conditions of formation and stable functioning of the regime of “non-wear” friction in these tribomaterials is carried out. It is shown that among industrial copper alloys, brass of the L90 type, aluminum bronzes BrA5 and BrA7, and tin bronzes BrSnP4-0.25 and BrSnP6.5-0.15 have the greatest wear resistance in surface-active lubricants. Examples of the implementation of the selective transfer mode in tribo-pairs used in railway and motor transport are given.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical Tribomechanics of Antifriction Materials Operating in Heavy-Loaded Friction Pairs in Active Lubricating Media\",\"authors\":\"L. I. Kuksenova, V. I. Savenko\",\"doi\":\"10.3103/S1068366623060077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Within the framework of physicochemical mechanics (the Rehbinder effect), the problems of the plasticizing and strengthening effect of the lubricating medium on the near-surface layers of metal tribomaterials are analyzed. The influence of modeling (petroleum jelly oil, glycerin, mineral oils, glycerin-based hydraulic fluids) and industrial (Buksol, Puma, and M-14V2) lubricant media that contain surfactants, is investigated on the main tribological (coefficient of friction, wear intensity), strength (yield strength, microhardness) and microstructural (broadening of X-ray lines, dislocation density and crystal lattice parameter) characteristics, as well as on the processes of diffusion redistribution of alloying elements in surface layers of tribomaterials, such as copper, brass, and bronze, when they are rubbed together with steel. The analysis of the conditions of formation and stable functioning of the regime of “non-wear” friction in these tribomaterials is carried out. It is shown that among industrial copper alloys, brass of the L90 type, aluminum bronzes BrA5 and BrA7, and tin bronzes BrSnP4-0.25 and BrSnP6.5-0.15 have the greatest wear resistance in surface-active lubricants. Examples of the implementation of the selective transfer mode in tribo-pairs used in railway and motor transport are given.</p>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366623060077\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366623060077","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Physicochemical Tribomechanics of Antifriction Materials Operating in Heavy-Loaded Friction Pairs in Active Lubricating Media
Within the framework of physicochemical mechanics (the Rehbinder effect), the problems of the plasticizing and strengthening effect of the lubricating medium on the near-surface layers of metal tribomaterials are analyzed. The influence of modeling (petroleum jelly oil, glycerin, mineral oils, glycerin-based hydraulic fluids) and industrial (Buksol, Puma, and M-14V2) lubricant media that contain surfactants, is investigated on the main tribological (coefficient of friction, wear intensity), strength (yield strength, microhardness) and microstructural (broadening of X-ray lines, dislocation density and crystal lattice parameter) characteristics, as well as on the processes of diffusion redistribution of alloying elements in surface layers of tribomaterials, such as copper, brass, and bronze, when they are rubbed together with steel. The analysis of the conditions of formation and stable functioning of the regime of “non-wear” friction in these tribomaterials is carried out. It is shown that among industrial copper alloys, brass of the L90 type, aluminum bronzes BrA5 and BrA7, and tin bronzes BrSnP4-0.25 and BrSnP6.5-0.15 have the greatest wear resistance in surface-active lubricants. Examples of the implementation of the selective transfer mode in tribo-pairs used in railway and motor transport are given.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.