{"title":"采用切换事件触发策略的新型通信时延协同控制方法","authors":"","doi":"10.1007/s10846-024-02076-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A novel communication time-delay classification-based method is designed for nonlinear multiagent systems with the finite-time prescribed performance function. The time-delay phenomenon for communication channels between agents is discussed. Then, an improved time-delay classification method is proposed to broaden the standard of classification mechanism by considering the degree of deviation and relative variation of neighbor agents, rather than classifying the delay time into large time-delay and small time-delay. Based on this, the unified Lyapunov-Krasovskii functional and the finite-time performance function are used to solve the large time-delay phenomenon and ensure that the error is within the preset boundary, respectively. Furthermore, a modified switching event-triggered strategy is put forward to reduce the transmission burden, which considers the impact of tracking error to adjust the threshold condition in real-time. Additionally, all signals of the closed-loop systems are bounded. Eventually, two simulation examples verify the validity of the control strategy.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"34 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Communication Time-Delay Cooperative Control Method with Switching Event-Triggered Strategy\",\"authors\":\"\",\"doi\":\"10.1007/s10846-024-02076-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A novel communication time-delay classification-based method is designed for nonlinear multiagent systems with the finite-time prescribed performance function. The time-delay phenomenon for communication channels between agents is discussed. Then, an improved time-delay classification method is proposed to broaden the standard of classification mechanism by considering the degree of deviation and relative variation of neighbor agents, rather than classifying the delay time into large time-delay and small time-delay. Based on this, the unified Lyapunov-Krasovskii functional and the finite-time performance function are used to solve the large time-delay phenomenon and ensure that the error is within the preset boundary, respectively. Furthermore, a modified switching event-triggered strategy is put forward to reduce the transmission burden, which considers the impact of tracking error to adjust the threshold condition in real-time. Additionally, all signals of the closed-loop systems are bounded. Eventually, two simulation examples verify the validity of the control strategy.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02076-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02076-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Novel Communication Time-Delay Cooperative Control Method with Switching Event-Triggered Strategy
Abstract
A novel communication time-delay classification-based method is designed for nonlinear multiagent systems with the finite-time prescribed performance function. The time-delay phenomenon for communication channels between agents is discussed. Then, an improved time-delay classification method is proposed to broaden the standard of classification mechanism by considering the degree of deviation and relative variation of neighbor agents, rather than classifying the delay time into large time-delay and small time-delay. Based on this, the unified Lyapunov-Krasovskii functional and the finite-time performance function are used to solve the large time-delay phenomenon and ensure that the error is within the preset boundary, respectively. Furthermore, a modified switching event-triggered strategy is put forward to reduce the transmission burden, which considers the impact of tracking error to adjust the threshold condition in real-time. Additionally, all signals of the closed-loop systems are bounded. Eventually, two simulation examples verify the validity of the control strategy.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).