{"title":"探索不同 PANI 含量(1-4% wt.)","authors":"","doi":"10.1007/s00231-024-03454-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this experimental study, we explore the potential enhancements in thermal conductivity while investigating alterations in latent heat and phase change temperature within Composite Phase Change Materials (PCMs). These composites consist of Paraffin Wax (PW) as the base material, incorporating dispersed conducting Polyaniline (PANI) powder in varying concentrations ranging from 1% wt. to 4% wt. The mass fractions of PANI added to PW include 1%, 2%, 3%, and 4%, and the composite PCMs are meticulously prepared through ultrasonication. Examining the surface morphology of Composite Phase Change Materials (PCMs) involved utilizing a Scanning Electron Microscope (SEM), while the determination of thermal conductivity employed a Heat Flow Meter. Additionally, latent heat and phase change temperatures were assessed through Differential Scanning Calorimetry (DSC). The obtained results indicate an augmentation in the thermal conductivity of the composites when compared to Paraffin Wax (PW). Specifically, thermal conductivity exhibited a 40% increase for 1% wt. of PANI, yet experienced a subsequent decline for the remaining weight percentages. Furthermore, the latent heat and phase change temperatures of the composites were observed to decrease in comparison to PW. These composite PCMs with enhanced thermal conductivity, achieved through the incorporation of Polyaniline in Paraffin Wax, are highly potential for several applications in energy storage systems, thermal regulation devices, and heat management technologies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring thermal dynamics of polyaniline-modified paraffin wax phase change material with varied PANI loadings (1–4% wt.)\",\"authors\":\"\",\"doi\":\"10.1007/s00231-024-03454-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this experimental study, we explore the potential enhancements in thermal conductivity while investigating alterations in latent heat and phase change temperature within Composite Phase Change Materials (PCMs). These composites consist of Paraffin Wax (PW) as the base material, incorporating dispersed conducting Polyaniline (PANI) powder in varying concentrations ranging from 1% wt. to 4% wt. The mass fractions of PANI added to PW include 1%, 2%, 3%, and 4%, and the composite PCMs are meticulously prepared through ultrasonication. Examining the surface morphology of Composite Phase Change Materials (PCMs) involved utilizing a Scanning Electron Microscope (SEM), while the determination of thermal conductivity employed a Heat Flow Meter. Additionally, latent heat and phase change temperatures were assessed through Differential Scanning Calorimetry (DSC). The obtained results indicate an augmentation in the thermal conductivity of the composites when compared to Paraffin Wax (PW). Specifically, thermal conductivity exhibited a 40% increase for 1% wt. of PANI, yet experienced a subsequent decline for the remaining weight percentages. Furthermore, the latent heat and phase change temperatures of the composites were observed to decrease in comparison to PW. These composite PCMs with enhanced thermal conductivity, achieved through the incorporation of Polyaniline in Paraffin Wax, are highly potential for several applications in energy storage systems, thermal regulation devices, and heat management technologies.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00231-024-03454-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00231-024-03454-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring thermal dynamics of polyaniline-modified paraffin wax phase change material with varied PANI loadings (1–4% wt.)
Abstract
In this experimental study, we explore the potential enhancements in thermal conductivity while investigating alterations in latent heat and phase change temperature within Composite Phase Change Materials (PCMs). These composites consist of Paraffin Wax (PW) as the base material, incorporating dispersed conducting Polyaniline (PANI) powder in varying concentrations ranging from 1% wt. to 4% wt. The mass fractions of PANI added to PW include 1%, 2%, 3%, and 4%, and the composite PCMs are meticulously prepared through ultrasonication. Examining the surface morphology of Composite Phase Change Materials (PCMs) involved utilizing a Scanning Electron Microscope (SEM), while the determination of thermal conductivity employed a Heat Flow Meter. Additionally, latent heat and phase change temperatures were assessed through Differential Scanning Calorimetry (DSC). The obtained results indicate an augmentation in the thermal conductivity of the composites when compared to Paraffin Wax (PW). Specifically, thermal conductivity exhibited a 40% increase for 1% wt. of PANI, yet experienced a subsequent decline for the remaining weight percentages. Furthermore, the latent heat and phase change temperatures of the composites were observed to decrease in comparison to PW. These composite PCMs with enhanced thermal conductivity, achieved through the incorporation of Polyaniline in Paraffin Wax, are highly potential for several applications in energy storage systems, thermal regulation devices, and heat management technologies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.