H.-J. Vogel, W. Amelung, C. Baum, M. Bonkowski, S. Blagodatsky, R. Grosch, M. Herbst, R. Kiese, S. Koch, M. Kuhwald, S. König, P. Leinweber, B. Lennartz, C. W. Müller, H. Pagel, M. C. Rillig, J. Rüschhoff, D. Russell, A. Schnepf, S. Schulz, N. Siebers, D. Vetterlein, C. Wachendorf, U. Weller, U. Wollschläger
{"title":"如何在耕地土壤多功能性建模中充分体现生物过程","authors":"H.-J. Vogel, W. Amelung, C. Baum, M. Bonkowski, S. Blagodatsky, R. Grosch, M. Herbst, R. Kiese, S. Koch, M. Kuhwald, S. König, P. Leinweber, B. Lennartz, C. W. Müller, H. Pagel, M. C. Rillig, J. Rüschhoff, D. Russell, A. Schnepf, S. Schulz, N. Siebers, D. Vetterlein, C. Wachendorf, U. Weller, U. Wollschläger","doi":"10.1007/s00374-024-01802-3","DOIUrl":null,"url":null,"abstract":"<p>Essential soil functions such as plant productivity, C storage, nutrient cycling and the storage and purification of water all depend on soil biological processes. Given this insight, it is remarkable that in modeling of these soil functions, the various biological actors usually do not play an explicit role. In this review and perspective paper we analyze the state of the art in modeling these soil functions and how biological processes could more adequately be accounted for. We do this for six different biologically driven processes clusters that are key for understanding soil functions, namely i) turnover of soil organic matter, ii) N cycling, iii) P dynamics, iv) biodegradation of contaminants v) plant disease control and vi) soil structure formation. A major conclusion is that the development of models to predict changes in soil functions at the scale of soil profiles (i.e. pedons) should be better rooted in the underlying biological processes that are known to a large extent. This is prerequisite to arrive at the predictive models that we urgently need under current conditions of Global Change.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to adequately represent biological processes in modeling multifunctionality of arable soils\",\"authors\":\"H.-J. Vogel, W. Amelung, C. Baum, M. Bonkowski, S. Blagodatsky, R. Grosch, M. Herbst, R. Kiese, S. Koch, M. Kuhwald, S. König, P. Leinweber, B. Lennartz, C. W. Müller, H. Pagel, M. C. Rillig, J. Rüschhoff, D. Russell, A. Schnepf, S. Schulz, N. Siebers, D. Vetterlein, C. Wachendorf, U. Weller, U. Wollschläger\",\"doi\":\"10.1007/s00374-024-01802-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Essential soil functions such as plant productivity, C storage, nutrient cycling and the storage and purification of water all depend on soil biological processes. Given this insight, it is remarkable that in modeling of these soil functions, the various biological actors usually do not play an explicit role. In this review and perspective paper we analyze the state of the art in modeling these soil functions and how biological processes could more adequately be accounted for. We do this for six different biologically driven processes clusters that are key for understanding soil functions, namely i) turnover of soil organic matter, ii) N cycling, iii) P dynamics, iv) biodegradation of contaminants v) plant disease control and vi) soil structure formation. A major conclusion is that the development of models to predict changes in soil functions at the scale of soil profiles (i.e. pedons) should be better rooted in the underlying biological processes that are known to a large extent. This is prerequisite to arrive at the predictive models that we urgently need under current conditions of Global Change.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-024-01802-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01802-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
How to adequately represent biological processes in modeling multifunctionality of arable soils
Essential soil functions such as plant productivity, C storage, nutrient cycling and the storage and purification of water all depend on soil biological processes. Given this insight, it is remarkable that in modeling of these soil functions, the various biological actors usually do not play an explicit role. In this review and perspective paper we analyze the state of the art in modeling these soil functions and how biological processes could more adequately be accounted for. We do this for six different biologically driven processes clusters that are key for understanding soil functions, namely i) turnover of soil organic matter, ii) N cycling, iii) P dynamics, iv) biodegradation of contaminants v) plant disease control and vi) soil structure formation. A major conclusion is that the development of models to predict changes in soil functions at the scale of soil profiles (i.e. pedons) should be better rooted in the underlying biological processes that are known to a large extent. This is prerequisite to arrive at the predictive models that we urgently need under current conditions of Global Change.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.