使用窦性心律心电图在卷积神经网络模型中检测心房颤动的导联特异性性能。

Circulation reports Pub Date : 2024-02-27 eCollection Date: 2024-03-08 DOI:10.1253/circrep.CR-23-0068
Shinya Suzuki, Jun Motogi, Takuya Umemoto, Naomi Hirota, Hiroshi Nakai, Wataru Matsuzawa, Tsuneo Takayanagi, Akira Hyodo, Keiichi Satoh, Takuto Arita, Naoharu Yagi, Mikio Kishi, Hiroaki Semba, Hiroto Kano, Shunsuke Matsuno, Yuko Kato, Takayuki Otsuka, Takayuki Hori, Minoru Matsuhama, Mitsuru Iida, Tokuhisa Uejima, Yuji Oikawa, Junji Yajima, Takeshi Yamashita
{"title":"使用窦性心律心电图在卷积神经网络模型中检测心房颤动的导联特异性性能。","authors":"Shinya Suzuki, Jun Motogi, Takuya Umemoto, Naomi Hirota, Hiroshi Nakai, Wataru Matsuzawa, Tsuneo Takayanagi, Akira Hyodo, Keiichi Satoh, Takuto Arita, Naoharu Yagi, Mikio Kishi, Hiroaki Semba, Hiroto Kano, Shunsuke Matsuno, Yuko Kato, Takayuki Otsuka, Takayuki Hori, Minoru Matsuhama, Mitsuru Iida, Tokuhisa Uejima, Yuji Oikawa, Junji Yajima, Takeshi Yamashita","doi":"10.1253/circrep.CR-23-0068","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> We developed a convolutional neural network (CNN) model to detect atrial fibrillation (AF) using the sinus rhythm ECG (SR-ECG). However, the diagnostic performance of the CNN model based on different ECG leads remains unclear. <b><i>Methods and Results:</i></b> In this retrospective analysis of a single-center, prospective cohort study, we identified 616 AF cases and 3,412 SR cases for the modeling dataset among new patients (n=19,170). The modeling dataset included SR-ECGs obtained within 31 days from AF-ECGs in AF cases and SR cases with follow-up ≥1,095 days. We evaluated the CNN model's performance for AF detection using 8-lead (I, II, and V1-6), single-lead, and double-lead ECGs through 5-fold cross-validation. The CNN model achieved an area under the curve (AUC) of 0.872 (95% confidence interval (CI): 0.856-0.888) and an odds ratio of 15.24 (95% CI: 12.42-18.72) for AF detection using the eight-lead ECG. Among the single-lead and double-lead ECGs, the double-lead ECG using leads I and V1 yielded an AUC of 0.871 (95% CI: 0.856-0.886) with an odds ratio of 14.34 (95% CI: 11.64-17.67). <b><i>Conclusions:</i></b> We assessed the performance of a CNN model for detecting AF using eight-lead, single-lead, and double-lead SR-ECGs. The model's performance with a double-lead (I, V1) ECG was comparable to that of the 8-lead ECG, suggesting its potential as an alternative for AF screening using SR-ECG.</p>","PeriodicalId":94305,"journal":{"name":"Circulation reports","volume":"6 3","pages":"46-54"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920024/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lead-Specific Performance for Atrial Fibrillation Detection in Convolutional Neural Network Models Using Sinus Rhythm Electrocardiography.\",\"authors\":\"Shinya Suzuki, Jun Motogi, Takuya Umemoto, Naomi Hirota, Hiroshi Nakai, Wataru Matsuzawa, Tsuneo Takayanagi, Akira Hyodo, Keiichi Satoh, Takuto Arita, Naoharu Yagi, Mikio Kishi, Hiroaki Semba, Hiroto Kano, Shunsuke Matsuno, Yuko Kato, Takayuki Otsuka, Takayuki Hori, Minoru Matsuhama, Mitsuru Iida, Tokuhisa Uejima, Yuji Oikawa, Junji Yajima, Takeshi Yamashita\",\"doi\":\"10.1253/circrep.CR-23-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> We developed a convolutional neural network (CNN) model to detect atrial fibrillation (AF) using the sinus rhythm ECG (SR-ECG). However, the diagnostic performance of the CNN model based on different ECG leads remains unclear. <b><i>Methods and Results:</i></b> In this retrospective analysis of a single-center, prospective cohort study, we identified 616 AF cases and 3,412 SR cases for the modeling dataset among new patients (n=19,170). The modeling dataset included SR-ECGs obtained within 31 days from AF-ECGs in AF cases and SR cases with follow-up ≥1,095 days. We evaluated the CNN model's performance for AF detection using 8-lead (I, II, and V1-6), single-lead, and double-lead ECGs through 5-fold cross-validation. The CNN model achieved an area under the curve (AUC) of 0.872 (95% confidence interval (CI): 0.856-0.888) and an odds ratio of 15.24 (95% CI: 12.42-18.72) for AF detection using the eight-lead ECG. Among the single-lead and double-lead ECGs, the double-lead ECG using leads I and V1 yielded an AUC of 0.871 (95% CI: 0.856-0.886) with an odds ratio of 14.34 (95% CI: 11.64-17.67). <b><i>Conclusions:</i></b> We assessed the performance of a CNN model for detecting AF using eight-lead, single-lead, and double-lead SR-ECGs. The model's performance with a double-lead (I, V1) ECG was comparable to that of the 8-lead ECG, suggesting its potential as an alternative for AF screening using SR-ECG.</p>\",\"PeriodicalId\":94305,\"journal\":{\"name\":\"Circulation reports\",\"volume\":\"6 3\",\"pages\":\"46-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1253/circrep.CR-23-0068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1253/circrep.CR-23-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:我们开发了一种卷积神经网络(CNN)模型,利用窦性心律心电图(SR-ECG)检测心房颤动(AF)。然而,基于不同心电图导联的 CNN 模型的诊断性能仍不明确。方法和结果:在这项对单中心前瞻性队列研究的回顾性分析中,我们在新患者(n=19170)中为建模数据集确定了 616 个房颤病例和 3,412 个 SR 病例。建模数据集包括房颤病例和随访时间≥1,095 天的 SR 病例在房颤心电图后 31 天内获得的 SR 心电图。我们使用八导联(I、II 和 V1-6)、单导联和双导联心电图,通过 5 倍交叉验证评估了 CNN 模型的房颤检测性能。使用八导联心电图检测房颤时,CNN 模型的曲线下面积 (AUC) 为 0.872(95% 置信区间 (CI):0.856-0.888),几率比为 15.24(95% CI:12.42-18.72)。在单导联和双导联心电图中,使用 I 和 V1 导联的双导联心电图的 AUC 为 0.871(95% CI:0.856-0.886),几率比为 14.34(95% CI:11.64-17.67)。结论我们评估了使用八导联、单导联和双导联 SR-ECG 检测房颤的 CNN 模型的性能。该模型在双导联(I、V1)心电图上的表现与八导联心电图相当,这表明它有潜力成为使用 SR-ECG 筛查房颤的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lead-Specific Performance for Atrial Fibrillation Detection in Convolutional Neural Network Models Using Sinus Rhythm Electrocardiography.

Background: We developed a convolutional neural network (CNN) model to detect atrial fibrillation (AF) using the sinus rhythm ECG (SR-ECG). However, the diagnostic performance of the CNN model based on different ECG leads remains unclear. Methods and Results: In this retrospective analysis of a single-center, prospective cohort study, we identified 616 AF cases and 3,412 SR cases for the modeling dataset among new patients (n=19,170). The modeling dataset included SR-ECGs obtained within 31 days from AF-ECGs in AF cases and SR cases with follow-up ≥1,095 days. We evaluated the CNN model's performance for AF detection using 8-lead (I, II, and V1-6), single-lead, and double-lead ECGs through 5-fold cross-validation. The CNN model achieved an area under the curve (AUC) of 0.872 (95% confidence interval (CI): 0.856-0.888) and an odds ratio of 15.24 (95% CI: 12.42-18.72) for AF detection using the eight-lead ECG. Among the single-lead and double-lead ECGs, the double-lead ECG using leads I and V1 yielded an AUC of 0.871 (95% CI: 0.856-0.886) with an odds ratio of 14.34 (95% CI: 11.64-17.67). Conclusions: We assessed the performance of a CNN model for detecting AF using eight-lead, single-lead, and double-lead SR-ECGs. The model's performance with a double-lead (I, V1) ECG was comparable to that of the 8-lead ECG, suggesting its potential as an alternative for AF screening using SR-ECG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信