{"title":"使用窦性心律心电图在卷积神经网络模型中检测心房颤动的导联特异性性能。","authors":"Shinya Suzuki, Jun Motogi, Takuya Umemoto, Naomi Hirota, Hiroshi Nakai, Wataru Matsuzawa, Tsuneo Takayanagi, Akira Hyodo, Keiichi Satoh, Takuto Arita, Naoharu Yagi, Mikio Kishi, Hiroaki Semba, Hiroto Kano, Shunsuke Matsuno, Yuko Kato, Takayuki Otsuka, Takayuki Hori, Minoru Matsuhama, Mitsuru Iida, Tokuhisa Uejima, Yuji Oikawa, Junji Yajima, Takeshi Yamashita","doi":"10.1253/circrep.CR-23-0068","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> We developed a convolutional neural network (CNN) model to detect atrial fibrillation (AF) using the sinus rhythm ECG (SR-ECG). However, the diagnostic performance of the CNN model based on different ECG leads remains unclear. <b><i>Methods and Results:</i></b> In this retrospective analysis of a single-center, prospective cohort study, we identified 616 AF cases and 3,412 SR cases for the modeling dataset among new patients (n=19,170). The modeling dataset included SR-ECGs obtained within 31 days from AF-ECGs in AF cases and SR cases with follow-up ≥1,095 days. We evaluated the CNN model's performance for AF detection using 8-lead (I, II, and V1-6), single-lead, and double-lead ECGs through 5-fold cross-validation. The CNN model achieved an area under the curve (AUC) of 0.872 (95% confidence interval (CI): 0.856-0.888) and an odds ratio of 15.24 (95% CI: 12.42-18.72) for AF detection using the eight-lead ECG. Among the single-lead and double-lead ECGs, the double-lead ECG using leads I and V1 yielded an AUC of 0.871 (95% CI: 0.856-0.886) with an odds ratio of 14.34 (95% CI: 11.64-17.67). <b><i>Conclusions:</i></b> We assessed the performance of a CNN model for detecting AF using eight-lead, single-lead, and double-lead SR-ECGs. The model's performance with a double-lead (I, V1) ECG was comparable to that of the 8-lead ECG, suggesting its potential as an alternative for AF screening using SR-ECG.</p>","PeriodicalId":94305,"journal":{"name":"Circulation reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920024/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lead-Specific Performance for Atrial Fibrillation Detection in Convolutional Neural Network Models Using Sinus Rhythm Electrocardiography.\",\"authors\":\"Shinya Suzuki, Jun Motogi, Takuya Umemoto, Naomi Hirota, Hiroshi Nakai, Wataru Matsuzawa, Tsuneo Takayanagi, Akira Hyodo, Keiichi Satoh, Takuto Arita, Naoharu Yagi, Mikio Kishi, Hiroaki Semba, Hiroto Kano, Shunsuke Matsuno, Yuko Kato, Takayuki Otsuka, Takayuki Hori, Minoru Matsuhama, Mitsuru Iida, Tokuhisa Uejima, Yuji Oikawa, Junji Yajima, Takeshi Yamashita\",\"doi\":\"10.1253/circrep.CR-23-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> We developed a convolutional neural network (CNN) model to detect atrial fibrillation (AF) using the sinus rhythm ECG (SR-ECG). However, the diagnostic performance of the CNN model based on different ECG leads remains unclear. <b><i>Methods and Results:</i></b> In this retrospective analysis of a single-center, prospective cohort study, we identified 616 AF cases and 3,412 SR cases for the modeling dataset among new patients (n=19,170). The modeling dataset included SR-ECGs obtained within 31 days from AF-ECGs in AF cases and SR cases with follow-up ≥1,095 days. We evaluated the CNN model's performance for AF detection using 8-lead (I, II, and V1-6), single-lead, and double-lead ECGs through 5-fold cross-validation. The CNN model achieved an area under the curve (AUC) of 0.872 (95% confidence interval (CI): 0.856-0.888) and an odds ratio of 15.24 (95% CI: 12.42-18.72) for AF detection using the eight-lead ECG. Among the single-lead and double-lead ECGs, the double-lead ECG using leads I and V1 yielded an AUC of 0.871 (95% CI: 0.856-0.886) with an odds ratio of 14.34 (95% CI: 11.64-17.67). <b><i>Conclusions:</i></b> We assessed the performance of a CNN model for detecting AF using eight-lead, single-lead, and double-lead SR-ECGs. The model's performance with a double-lead (I, V1) ECG was comparable to that of the 8-lead ECG, suggesting its potential as an alternative for AF screening using SR-ECG.</p>\",\"PeriodicalId\":94305,\"journal\":{\"name\":\"Circulation reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1253/circrep.CR-23-0068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1253/circrep.CR-23-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Lead-Specific Performance for Atrial Fibrillation Detection in Convolutional Neural Network Models Using Sinus Rhythm Electrocardiography.
Background: We developed a convolutional neural network (CNN) model to detect atrial fibrillation (AF) using the sinus rhythm ECG (SR-ECG). However, the diagnostic performance of the CNN model based on different ECG leads remains unclear. Methods and Results: In this retrospective analysis of a single-center, prospective cohort study, we identified 616 AF cases and 3,412 SR cases for the modeling dataset among new patients (n=19,170). The modeling dataset included SR-ECGs obtained within 31 days from AF-ECGs in AF cases and SR cases with follow-up ≥1,095 days. We evaluated the CNN model's performance for AF detection using 8-lead (I, II, and V1-6), single-lead, and double-lead ECGs through 5-fold cross-validation. The CNN model achieved an area under the curve (AUC) of 0.872 (95% confidence interval (CI): 0.856-0.888) and an odds ratio of 15.24 (95% CI: 12.42-18.72) for AF detection using the eight-lead ECG. Among the single-lead and double-lead ECGs, the double-lead ECG using leads I and V1 yielded an AUC of 0.871 (95% CI: 0.856-0.886) with an odds ratio of 14.34 (95% CI: 11.64-17.67). Conclusions: We assessed the performance of a CNN model for detecting AF using eight-lead, single-lead, and double-lead SR-ECGs. The model's performance with a double-lead (I, V1) ECG was comparable to that of the 8-lead ECG, suggesting its potential as an alternative for AF screening using SR-ECG.