Ashly Jose, Pang Ying Cheung, Zahra Laouby, Frédérique Vanholsbeeck, Juliette E Cheyne
{"title":"用于啮齿动物脑成像的低成本可逆串联透镜介孔镜。","authors":"Ashly Jose, Pang Ying Cheung, Zahra Laouby, Frédérique Vanholsbeeck, Juliette E Cheyne","doi":"10.1117/1.NPh.11.1.014306","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>The development of imaging systems that are cost-efficient and modular is essential for modern neuroscience research.</p><p><strong>Aim: </strong>In the current study, we designed, developed, and characterized a low-cost reversible tandem lens mesoscope for brain imaging in rodents.</p><p><strong>Approach: </strong>Using readily available components, we assembled a robust imaging system that is highly efficient and cost-effective. We developed a mesoscope that offers high-resolution structural and functional imaging with cost-effective lenses and CMOS camera.</p><p><strong>Results: </strong>The reversible tandem lens configuration of the mesoscope offers two fields of view (FOVs), which can be achieved by swapping the objective and imaging lenses. The large FOV configuration of <math><mrow><mn>12.6</mn><mo>×</mo><mn>10.5</mn><mtext> </mtext><mi>mm</mi></mrow></math> provides a spatial resolution up to <math><mrow><mn>4.92</mn><mtext> </mtext><mi>μ</mi><mi>m</mi></mrow></math>, and the small FOV configuration of <math><mrow><mn>6</mn><mo>×</mo><mn>5</mn><mtext> </mtext><mi>mm</mi></mrow></math> provides a resolution of up to <math><mrow><mn>2.46</mn><mtext> </mtext><mi>μ</mi><mi>m</mi></mrow></math>. We demonstrate the efficiency of our system for imaging neuronal calcium activity in both rat and mouse brains <i>in vivo</i>.</p><p><strong>Conclusions: </strong>The careful selection of the mesoscope components ensured its compactness, portability, and versatility, meaning that different types of samples and sample holders can be easily accommodated, enabling a range of different experiments both <i>in vivo</i> and <i>in vitro</i>. The custom-built reversible FOV mesoscope is cost-effective and was developed for under US$10,000 with excellent performance.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 1","pages":"014306"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924044/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-cost reversible tandem lens mesoscope for brain imaging in rodents.\",\"authors\":\"Ashly Jose, Pang Ying Cheung, Zahra Laouby, Frédérique Vanholsbeeck, Juliette E Cheyne\",\"doi\":\"10.1117/1.NPh.11.1.014306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>The development of imaging systems that are cost-efficient and modular is essential for modern neuroscience research.</p><p><strong>Aim: </strong>In the current study, we designed, developed, and characterized a low-cost reversible tandem lens mesoscope for brain imaging in rodents.</p><p><strong>Approach: </strong>Using readily available components, we assembled a robust imaging system that is highly efficient and cost-effective. We developed a mesoscope that offers high-resolution structural and functional imaging with cost-effective lenses and CMOS camera.</p><p><strong>Results: </strong>The reversible tandem lens configuration of the mesoscope offers two fields of view (FOVs), which can be achieved by swapping the objective and imaging lenses. The large FOV configuration of <math><mrow><mn>12.6</mn><mo>×</mo><mn>10.5</mn><mtext> </mtext><mi>mm</mi></mrow></math> provides a spatial resolution up to <math><mrow><mn>4.92</mn><mtext> </mtext><mi>μ</mi><mi>m</mi></mrow></math>, and the small FOV configuration of <math><mrow><mn>6</mn><mo>×</mo><mn>5</mn><mtext> </mtext><mi>mm</mi></mrow></math> provides a resolution of up to <math><mrow><mn>2.46</mn><mtext> </mtext><mi>μ</mi><mi>m</mi></mrow></math>. We demonstrate the efficiency of our system for imaging neuronal calcium activity in both rat and mouse brains <i>in vivo</i>.</p><p><strong>Conclusions: </strong>The careful selection of the mesoscope components ensured its compactness, portability, and versatility, meaning that different types of samples and sample holders can be easily accommodated, enabling a range of different experiments both <i>in vivo</i> and <i>in vitro</i>. The custom-built reversible FOV mesoscope is cost-effective and was developed for under US$10,000 with excellent performance.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 1\",\"pages\":\"014306\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924044/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.1.014306\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.1.014306","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Low-cost reversible tandem lens mesoscope for brain imaging in rodents.
Significance: The development of imaging systems that are cost-efficient and modular is essential for modern neuroscience research.
Aim: In the current study, we designed, developed, and characterized a low-cost reversible tandem lens mesoscope for brain imaging in rodents.
Approach: Using readily available components, we assembled a robust imaging system that is highly efficient and cost-effective. We developed a mesoscope that offers high-resolution structural and functional imaging with cost-effective lenses and CMOS camera.
Results: The reversible tandem lens configuration of the mesoscope offers two fields of view (FOVs), which can be achieved by swapping the objective and imaging lenses. The large FOV configuration of provides a spatial resolution up to , and the small FOV configuration of provides a resolution of up to . We demonstrate the efficiency of our system for imaging neuronal calcium activity in both rat and mouse brains in vivo.
Conclusions: The careful selection of the mesoscope components ensured its compactness, portability, and versatility, meaning that different types of samples and sample holders can be easily accommodated, enabling a range of different experiments both in vivo and in vitro. The custom-built reversible FOV mesoscope is cost-effective and was developed for under US$10,000 with excellent performance.
期刊介绍:
At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.