Zahra Aaly-Gharibeh, Mohammadreza Hosseinchi, Ali Shalizar-Jalali
{"title":"纳米姜黄素对多囊卵巢综合征小鼠模型生育力的影响","authors":"Zahra Aaly-Gharibeh, Mohammadreza Hosseinchi, Ali Shalizar-Jalali","doi":"10.30466/vrf.2023.2006604.3935","DOIUrl":null,"url":null,"abstract":"<p><p>The precise pathophysiology of polycystic ovary syndrome (PCOS) is not well-founded. In an attempt to fill this gap, the current study was executed to probe the effect of nanocurcumin (NCC) on ovarian tissue, <i>in vitro</i> fertilization (IVF) and pre-implantation embryo development in a mouse model of PCOS. Fifty adult female mice were randomly categorized into five equal groups including non-treated control and PCOS (receiving 0.20 mg estradiol valerate (EV) intra-peritoneally once a day for 21 days) as well as NCC<sub>12.50</sub> + PCOS, NCC<sub>25</sub> + PCOS and NCC<sub>50</sub> + PCOS (receiving respectively 12.50, 25.00 and 50.00 mg kg<sup>-1</sup> NCC daily along with EV injection through oral gavages for 21 days) groups. Subsequently, ovarian histo-architecture and total anti-oxidant capacity, and malonaldehyde and catalase levels as well as <i>in vitro</i> fertilizing potential, early embryonic development and serum testosterone concentration were analyzed. Results showed that NCC in a dose-dependent manner improved ovarian cyto-architectural organization and oxidant/anti-oxidant balance along with IVF rate and pre-implantation embryo development in PCOS mice. These findings revealed that NCC at the doses of 25.00 and 50.00 mg kg<sup>-1</sup> could alleviate PCOS-linked reproductive disruptions in female mice.</p>","PeriodicalId":23989,"journal":{"name":"Veterinary Research Forum","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924291/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of nanocurcumin on fertility in murine model of polycystic ovary syndrome.\",\"authors\":\"Zahra Aaly-Gharibeh, Mohammadreza Hosseinchi, Ali Shalizar-Jalali\",\"doi\":\"10.30466/vrf.2023.2006604.3935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The precise pathophysiology of polycystic ovary syndrome (PCOS) is not well-founded. In an attempt to fill this gap, the current study was executed to probe the effect of nanocurcumin (NCC) on ovarian tissue, <i>in vitro</i> fertilization (IVF) and pre-implantation embryo development in a mouse model of PCOS. Fifty adult female mice were randomly categorized into five equal groups including non-treated control and PCOS (receiving 0.20 mg estradiol valerate (EV) intra-peritoneally once a day for 21 days) as well as NCC<sub>12.50</sub> + PCOS, NCC<sub>25</sub> + PCOS and NCC<sub>50</sub> + PCOS (receiving respectively 12.50, 25.00 and 50.00 mg kg<sup>-1</sup> NCC daily along with EV injection through oral gavages for 21 days) groups. Subsequently, ovarian histo-architecture and total anti-oxidant capacity, and malonaldehyde and catalase levels as well as <i>in vitro</i> fertilizing potential, early embryonic development and serum testosterone concentration were analyzed. Results showed that NCC in a dose-dependent manner improved ovarian cyto-architectural organization and oxidant/anti-oxidant balance along with IVF rate and pre-implantation embryo development in PCOS mice. These findings revealed that NCC at the doses of 25.00 and 50.00 mg kg<sup>-1</sup> could alleviate PCOS-linked reproductive disruptions in female mice.</p>\",\"PeriodicalId\":23989,\"journal\":{\"name\":\"Veterinary Research Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research Forum\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.30466/vrf.2023.2006604.3935\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research Forum","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.30466/vrf.2023.2006604.3935","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
Effect of nanocurcumin on fertility in murine model of polycystic ovary syndrome.
The precise pathophysiology of polycystic ovary syndrome (PCOS) is not well-founded. In an attempt to fill this gap, the current study was executed to probe the effect of nanocurcumin (NCC) on ovarian tissue, in vitro fertilization (IVF) and pre-implantation embryo development in a mouse model of PCOS. Fifty adult female mice were randomly categorized into five equal groups including non-treated control and PCOS (receiving 0.20 mg estradiol valerate (EV) intra-peritoneally once a day for 21 days) as well as NCC12.50 + PCOS, NCC25 + PCOS and NCC50 + PCOS (receiving respectively 12.50, 25.00 and 50.00 mg kg-1 NCC daily along with EV injection through oral gavages for 21 days) groups. Subsequently, ovarian histo-architecture and total anti-oxidant capacity, and malonaldehyde and catalase levels as well as in vitro fertilizing potential, early embryonic development and serum testosterone concentration were analyzed. Results showed that NCC in a dose-dependent manner improved ovarian cyto-architectural organization and oxidant/anti-oxidant balance along with IVF rate and pre-implantation embryo development in PCOS mice. These findings revealed that NCC at the doses of 25.00 and 50.00 mg kg-1 could alleviate PCOS-linked reproductive disruptions in female mice.
期刊介绍:
Veterinary Research Forum (VRF) is a quarterly international journal committed to publish worldwide contributions on all aspects of veterinary science and medicine, including anatomy and histology, physiology and pharmacology, anatomic and clinical pathology, parasitology, microbiology, immunology and epidemiology, food hygiene, poultry science, fish and aquaculture, anesthesia and surgery, large and small animal internal medicine, large and small animal reproduction, biotechnology and diagnostic imaging of domestic, companion and farm animals.